with solid solution phases.Nat. Commun. 6 , 6529 (2015).
doi:10.1038/ncomms7529; pmid: 25739749
- S. Nellaiappanet al., High-entropy alloys as catalysts for
the CO 2 and CO reduction reactions: Experimental realization.
ACS Catal. 10 , 3658–3663 (2020). doi:10.1021/
acscatal.9b04302 - S. Deshpande, T. Maxson, J. Greeley, Graph theory approach
to determine configurations of multidentate and high
coverage adsorbates for heterogeneous catalysis.npj
Comput.Mater. 6 ,1–6 (2020). - E. J. Kluenderet al., Catalyst discovery through megalibraries
of nanomaterials.Proc. Natl. Acad. Sci. U.S.A. 116 , 40– 45
(2019). doi:10.1073/pnas.1815358116 30559201 - X. Liuet al., Inkjet printing assisted synthesis of
multicomponent mesoporous metal oxides for ultrafast
catalyst exploration.Nano Lett. 12 , 5733–5739 (2012).
doi:10.1021/nl302992q; pmid: 23051615 - J. Liet al., Combinatorial screening of Pd-based quaternary
electrocatalysts for oxygen reduction reaction in alkaline
media.J. Mater. Chem. A Mater. Energy Sustain. 5 , 67– 72
(2017). doi:10.1039/C6TA08088J - L. Bankoet al., Unravelling composition–activity–stability
trends in high entropy alloy electrocatalysts by using a
data‐guided combinatorial synthesis strategy and computational
modeling.Adv. Energy Mater. 12 , 2103312 (2022). doi:10.1002/
aenm.202103312 - O. A. Krysiaket al., Searching novel complex solid solution
electrocatalysts in unconventional element combinations.
Nano Res.(2021). doi:10.1007/s12274-021-3637-z - L. Banko, O. A. Krysiak, B. Xiao, T. Löffler, A. Savan,
J. K. Pedersen, J. Rossmeisl, W. Schuhmann, A. Ludwig,
Combinatorial materials discovery strategy for high entropy
alloy electrocatalysts using deposition source permutations.
arXiv:2106.08776[cond-mat.mtrl-sci] (2021).
- Z. Zhouet al., Machine learning guided appraisal and exploration
of phase design for high entropy alloys.npj Comput. Mater. 5 , 128
(2019). doi:10.1038/s41524-019-0265-1 - H. S. Stein, D. Guevarra, P. F. Newhouse, E. Soedarmadji,
J. M. Gregoire, Machine learning of optical properties of
materials - predicting spectra from images and images from
spectra.Chem. Sci. 10 , 47–55 (2018). doi:10.1039/
C8SC03077D; pmid: 30746072 - H. Chunet al., First-principle-data-integrated machine-
learning approach for high-throughput searching of
ternary electrocatalyst toward oxygen reduction reaction.
Chem Catal. 1 , 855–869 (2021). doi:10.1016/
j.checat.2021.06.001 - T. Lookman, P. V. Balachandran, D. Xue, R. Yuan, Active
learning in materials science with emphasis on adaptive
sampling using uncertainties for targeted design.npj Comput.
Mater. 5 , 21 (2019). doi:10.1038/s41524-019-0153-8 - R. Yuanet al., Accelerated discovery of large electrostrains in
BaTiO 3 ‐based piezoelectrics using active learning.Adv. Mater.
30 , 1702884 (2018). doi:10.1002/adma.201702884;
pmid: 29315814 - D. Xueet al., Accelerated search for materials with targeted
properties by adaptive design.Nat. Commun. 7 , 11241 (2016).
doi:10.1038/ncomms11241; pmid: 27079901 - J. K. Pedersenet al., Bayesian optimization of high-entropy
alloy compositions for electrocatalytic oxygen reduction.
Angew. Chem. Int. Ed. 60 , 24144–24152 (2021). doi:10.1002/
anie.202108116; pmid: 34506069
121. J. Miaoet al.,“Materials Data Bank: A database for
archiving 3D atomic coordinates and chemical species of
materials”(2022);https://www.materialsdatabank.org.
ACKNOWLEDGMENTS
Funding:L.H. acknowledges support from the National Science Foundation
(NSF CMMI-1635221) and the US Department of Energy (DOE), Advanced
Research Projects Agency–Energy (ARPA-E). J.L. acknowledges
support from the NSF (DMR-2026193 for compositionally complex
fluorite–based oxides and DMR-2011967 for interfacial science). J.M.
acknowledges support from the DOE, Office of Science, Basic Energy
Sciences, Division of Materials Sciences and Engineering, under award
no. DE-SC0010378 and by STROBE: A National Science Foundation
Science and Technology Center under award no. DMR-1548924. C.W.
acknowledges support from the DOE, ARPA-E, and the Petroleum
Research Fund (PRF) of the American Chemical Society. G.W.
acknowledges support from the US National Science Foundation (NSF
DMR grant no. 1905572). J.G., I.K., C.W., and L.H. acknowledge the DOE
Office of Science, Office of Basic Energy Sciences (BES), Chemical,
Biological, and Geosciences Division, Data Science Initiative grant no.
DE-SC0020381. Use of computational resources from the National
Energy Research Scientific Computing Center is also acknowledged.
M.C. acknowledges support from the DOE, Office of Basic Energy Sciences,
under early career award no. ERKCZ55 and the Center for Nanophase
Materials Sciences, which is a DOE Office of Science User Facility.Author
contributions:Y.Y., Q.D., A.B., and L.H. wrote the paper with input from J.L.,
J.M., M.C., C.W., I.G.K., Z.J.R., J.G., G.W., and A.A.Competing interests:
The authors declare no competing interests.Data and materials
availability:References to all data are provided in the manuscript.
10.1126/science.abn3103
Yaoet al.,Science 376 , eabn3103 (2022) 8 April 2022 11 of 11
RESEARCH | REVIEW