Mathematics_Today_-_October_2016

(backadmin) #1

  1. (c) : S
    Q


ab
ab

a
b

SQ Q QS
S

=

(^222) ⇒ = +± +
2
()



  1. (a) : Note that sides are ()sinab− α
    2


and
()cosab− α
2


  1. A → q ; B → p, q, r ; C → r


(A) ∵ max | |,| |{}xy= 12 /


|| /, || /
|| /, || /

xy
yx

=<
=<




12 12
12 12

if
if

Required area = 1 × 1 




= –1/

= –1/

= 1/

= 1/





= 1 sq. unit
(B) The line y = x cuts
the lines |x + y| = 6
i.e, x + y = ± 6
At x = ± 3, ⇒ (x, y) ≡ (–3, –3) and (3, 3)
then –3 < a < 3
∴ 0 ≤ |a| < 3
⇒ [|a|] = 0, 1, 2
(C) Since (0, 0) and (1, 1) lie on the same side.
So, a^2 + ab + 1 > 0
∵ Coefficient of a^2 > 0 ∴ D < 0
b^2 – 4 < 0 or – 2 < b < 2
⇒ b = –1, 0, 1
∴ Number of non-zero integral values of b are 2.
(b = –1 and b = 1)



  1. (2) : If x ∈ (0, 1)
    Then –1 ≤ x + y < 0
    And if x ∈ [1, 2)
    0 ≤ x + y < 1


2
1

(^123)










+=–1

+= 0

+= 1

Required area 
= 4 ⎛⎝⎜^1 ⋅⋅ ⎞⎠⎟
2

12
4

sinπ

= 2 sq. units


  1. (3) : Let, D = (2, –1) be
    the reflection of A in x-axis,
    and let E = (1, 2) be the
    reflection in the line y = x.
    Then AB = BD and AC = CE,
    so the perimeter of ABC is
    DB + BC + CE ≥ DE =^10

  2. (4) : 2(a + b) = x (a constant)
    




  



(^) 


Area of PQRS = (bsinθ + acosθ)(asinθ + bcosθ)
=+ab ab+ ≤ ab x x+ = ∴ = ⇒x=
22 2 2 2
2
2
288
sin θ () 32 16



  1. (1) ””












   
   !  
"#   

    

 
   

  
 


       $

      $ $

       $
Free download pdf