Mathematics_Today_-_October_2016

(backadmin) #1

  1. (a) : f ′(x) = f (x) + k

    • ∫ fx =∫
      fx k




()dx dx
()
⇒ log(f (x) + k) = x + C ⇒ f(x) = k 1 ex – k


∴ (^) fkk() 0 4 e
(^13)
2
= − = −^ .... (1)
Also, kfxdx=∫ ()
0
2
⇒ 3 k = k 1 (e^2 – 1) .... (2)
Solving (1) and (2), we get
fx e
()= x−⎛e −
⎝⎜

⎠⎟
(^21)
3



  1. (a, b, c) : 0
    2


<<x ⇒ x
x

π sin

is decreasing and sinx < x < tanx


⇒ sin(sin )>>
sin

sin sin(sin )
tan

x
x

x
x

x
x

⇒ I 1 > I 2 > I 3


  1. (a, d) : Let f–1(x) = y ⇒ x = f(y)
    ⇒ dx = f ′(y)dy


Ifybyfydy
a

b
=∫2()(− ) ()′

=bfyfydy yfyfydy∫∫′ − ′
a

b

a

b
22 () () () ()

=bf b f a−−bf b af a++∫f ydy
a

b
(() ())22 2 2 2() () ()

=+∫fxdx abfa− =∫ fx fadx−
a

b

a

b 2222
() ( ) () ( () ())


  1. (a, b, c, d) : dx
    x


x
xx

dx
() 11 +^2010 ()^2010

=
∫ ∫ +

= (^2) ∫t 2010 −^1 =+ 1
t
dt ()wheret x
= ⎡ −




(^2) ⎥+
1
2009
1
tt^200920082008
c
⇒ α = 2009, β = 2008



  1. (a, c, d) : Let I x
    x


x
x

= + dx

− −
+


⎝⎜


−∫ ⎠⎟

1
1

1
1

2

12

12

/

/

=

=−
− −

∫∫


4
1

2 4
12 2 1

12

0 2

x^12
x

dx x
x

dx
/

//
()

=−− (^414) {}=− ⎝⎜⎛^3 ⎠⎟⎞
4
2
0
12
ln | | ln
/
x
= (^4) ⎝⎜⎛^4 ⎟⎠⎞= ⎛⎝⎜ ⎟⎠⎞=− ⎛⎝⎜ ⎞⎠⎟
3
256
81
81
256
ln ln ln



  1. (a, b, c, d) :
    ′ =×






+
∫ +
fx x x
x

x
t

dt

x
() sin
cos

cos
/ cos

2
1

1

(^22241)
2
π



  1. (b, d) : Let I dt
    e tt


x
=
∫/ ()+

cot

1 1 2

Put t = 1/z ⇒dt=−
z

(^12) dz
∴ =

⎛⎝⎜ + ⎞⎠⎟



  • =
    ∫ ∫ +
    I z
    dz
    z z
    zdz
    z
    tdt
    x t
    e
    x
    e
    e
    1
    (^11111)
    2
    2
    () ()^22
    tan tan
    tanxx





  • ∫ ∫ +
    tdt
    t
    dt
    e tt
    x
    e
    x
    1 11221 / ()
    cot
    /
    tan








  • =




  • ∫∫t =+
    t
    dt t
    t
    dt tdt
    t
    t
    e
    x
    x
    e
    e
    e
    (^111) e
    1
    2
    2 1
    1
    22
    2
    1
    / 1
    tan
    tan
    /
    /
    [ln( )]
    ee

    =+⎧⎨ − ⎛⎝⎜ + ⎞⎠⎟




    (^1) ==
    2
    1 1 1 1
    2
    ln( e^2 ) ln 2 (ln^2 ) 1
    e
    e
    Also,^2
    1
    4
    1
    (^41)
    22
    1
    0
    1
    1
    1
    πππ
    dt
    t
    dt




  • t




  • = ⋅ −

    ∫ ∫ tan = ⋅ =
    4
    4
    1
    π
    π





  1. (a) : − + − + − + −




∫∫∫∫^5432
1

12

12

0

0

12

12

1
dx dx dx dx

/

/

/

/
=−−−−^5 =−
2

2 3
2

17


  1. (c) : 01501
    0


1

1

50
dx dx

tan

tan

∫∫+=−tan


π
π


  1. (c) : 01
    2 2


32
dx dx
π

π

π

π π

/

/
∫∫+ − =−


  1. A  (Q), B  (P), C  (R), D  (S)


(A) Let I x
xx

dx

n
= nn+



sin
sin cos

/

α

πα 2
... (i)

Idx

n

nn

=

⎛⎝ − ⎞⎠

⎝⎛ − ⎞⎠+ ⎛⎝ − ⎞⎠



sin

sin cos

/ π α

α π α π α

πα 2

22

2

=
+



cos
cos sin

/ n
nn

α
α αα

πα 2
... (ii)
Free download pdf