- (a) : f ′(x) = f (x) + k
′- ∫ fx =∫
fx k
- ∫ fx =∫
()dx dx
()
⇒ log(f (x) + k) = x + C ⇒ f(x) = k 1 ex – k
∴ (^) fkk() 0 4 e
(^13)
2
= − = −^ .... (1)
Also, kfxdx=∫ ()
0
2
⇒ 3 k = k 1 (e^2 – 1) .... (2)
Solving (1) and (2), we get
fx e
()= x−⎛e −
⎝⎜
⎞
⎠⎟
(^21)
3
- (a, b, c) : 0
2
<<x ⇒ x
x
π sin
is decreasing and sinx < x < tanx
⇒ sin(sin )>>
sin
sin sin(sin )
tan
x
x
x
x
x
x
⇒ I 1 > I 2 > I 3
- (a, d) : Let f–1(x) = y ⇒ x = f(y)
⇒ dx = f ′(y)dy
Ifybyfydy
a
b
=∫2()(− ) ()′
=bfyfydy yfyfydy∫∫′ − ′
a
b
a
b
22 () () () ()
=bf b f a−−bf b af a++∫f ydy
a
b
(() ())22 2 2 2() () ()
=+∫fxdx abfa− =∫ fx fadx−
a
b
a
b 2222
() ( ) () ( () ())
- (a, b, c, d) : dx
x
x
xx
dx
() 11 +^2010 ()^2010
=
∫ ∫ +
= (^2) ∫t 2010 −^1 =+ 1
t
dt ()wheret x
= ⎡ −
⎣
⎢
⎤
⎦
(^2) ⎥+
1
2009
1
tt^200920082008
c
⇒ α = 2009, β = 2008
- (a, c, d) : Let I x
x
x
x
= + dx
−
− −
+
⎛
⎝⎜
⎞
−∫ ⎠⎟
1
1
1
1
2
12
12
/
/
=
−
=−
− −
∫∫
4
1
2 4
12 2 1
12
0 2
x^12
x
dx x
x
dx
/
//
()
=−− (^414) {}=− ⎝⎜⎛^3 ⎠⎟⎞
4
2
0
12
ln | | ln
/
x
= (^4) ⎝⎜⎛^4 ⎟⎠⎞= ⎛⎝⎜ ⎟⎠⎞=− ⎛⎝⎜ ⎞⎠⎟
3
256
81
81
256
ln ln ln
- (a, b, c, d) :
′ =×
+
∫ +
fx x x
x
x
t
dt
x
() sin
cos
cos
/ cos
2
1
1
(^22241)
2
π
- (b, d) : Let I dt
e tt
x
=
∫/ ()+
cot
1 1 2
Put t = 1/z ⇒dt=−
z
(^12) dz
∴ =
−
⎛⎝⎜ + ⎞⎠⎟
- =
∫ ∫ +
I z
dz
z z
zdz
z
tdt
x t
e
x
e
e
1
(^11111)
2
2
() ()^22
tan tan
tanxx
∫
∴
∫ ∫ +
tdt
t
dt
e tt
x
e
x
1 11221 / ()
cot
/
tan
=
∫∫t =+
t
dt t
t
dt tdt
t
t
e
x
x
e
e
e
(^111) e
1
2
2 1
1
22
2
1
/ 1
tan
tan
/
/
[ln( )]
ee
∫
=+⎧⎨ − ⎛⎝⎜ + ⎞⎠⎟
⎩
⎫
⎬
⎭
(^1) ==
2
1 1 1 1
2
ln( e^2 ) ln 2 (ln^2 ) 1
e
e
Also,^2
1
4
1
(^41)
22
1
0
1
1
1
πππ
dt
t
dt
t
= ⋅ −
−
∫ ∫ tan = ⋅ =
4
4
1
π
π
- (a) : − + − + − + −
−
−
−
∫∫∫∫^5432
1
12
12
0
0
12
12
1
dx dx dx dx
/
/
/
/
=−−−−^5 =−
2
2 3
2
17
- (c) : 01501
0
1
1
50
dx dx
tan
tan
∫∫+=−tan
π
π
- (c) : 01
2 2
32
dx dx
π
π
π
π π
/
/
∫∫+ − =−
- A (Q), B (P), C (R), D (S)
(A) Let I x
xx
dx
n
= nn+
−
∫
sin
sin cos
/
α
πα 2
... (i)
Idx
n
nn
=
⎛⎝ − ⎞⎠
⎝⎛ − ⎞⎠+ ⎛⎝ − ⎞⎠
−
∫
sin
sin cos
/ π α
α π α π α
πα 2
22
2
=
+
−
∫
cos
cos sin
/ n
nn
α
α αα
πα 2
... (ii)