⇒−^1 +=
3 v^3
log |vx| c
⇒−x +=
y
yc
3
3 3 log | |
This is the required solution of the given differential
equation.
- Let P be the principal at any time t. Then,
dP
dt
== 5 P^5 P
100
%of
⇒ dP=
dt
P
20
⇒^11 =
P 20
dP dt
Integrating both sides, we get
11
P 20
∫ dP=∫ dt
⇒ logPt C=+^1 log
(^20)
⇒ logP=
C
(^1) t
20
⇒ P = Cet/20 ...(1)
When t = 0, we have P = 1000
Putting these values in (1), we get 1000 = C
⇒ P = 1000 et/20 ...(2)
Let T years be the time required to double the
principal i.e., at t = T, P = 2000. Substituting these
values in (2), we get
2000 = 1000eT/20
⇒ eT/^20 = 2 ⇒ T =logee⇒ T= log
20
2202
Hence, the principal doubles in 20 loge 2 years.
- We h a v e y dx –(x + 2y^2 )dy = 0
or dx or
dy
xy
y
dx
dy
x
y
= + + ⎛− y
⎝⎜
⎞
⎠⎟
(^21) = 2
2
...(1)
This differential equation is of the form
dx
dy
+=Px Q, where
P
y
=−^1 andQy= 2
Now, I.F.== = =∫ ∫
− −
ee e
y
Pdy ydy y
1
log^1
∴ Solution is given by x
y
Q
y
⋅^11 =∫ ⋅ dy C+
⇒ x=∫ ⋅ += +
y
y
y
2 1 dy C 2 y C^ ⇒^ x = 2y^2 + Cy^
This is the general solution of the given differential
equation.
- We h a v e
220 xy y^22 x dy
dx
+ − =
...(1)
and y(1) = 2
From (1), dy
dx
xy y
x
=^2 +
2
2
2 ...(2)
This is a linear homogeneous differential equation.
Put y = vx, then dy
dx
vxdv
dx
=+
∴ Equation (2) becomes
vxdv
dx
+ =^2 + =+
2
1
2
vv^22
vv
⇒ xdv=
dx
(^1) v
2
(^2) ⇒− 20 +=
2
dv
v
dx
x
Integrating, we get
2
v
+=log | |xc
⇒^2 x+=
y
log | |xc ...(3)
Since y(1) = 2
∴ From (3),^21
2
× +=log 1 c ⇒ c = 1
⇒ 2 x 1
y
+=log | |x ⇒ 2 x – y + ylog|x| = 0
This is the required particular solution.
- We h a v e dy
dx
+= +yxx xxcot^2 cot 2 ...(1)
This is a linear D.E. of the form dy
dx
+=Py Q
Where P = cot x and Q = x^2 cotx + 2x
∴ I.F.==ee∫∫Pdx cotx dx
=elog sinx = sinx
∴ The solution of (1) is given by
yxx xxxdxc⋅sin =+ +∫(^2 cot 2 ) sin
=++∫x xdx ∫x xdx c
(^2) cos 2 sin
=x x−⋅∫ x xdx++∫x xdx c
(^2) sin 22 sin sin
= x^2 sin x + c
⇒ y = x^2 + c · cosec x ...(2)
Since,,yx== 0 when
2
π
∴ From (2), 0
44
22
=+ππcc⇒ =−
⇒ yx=^2 − x
2
4
π cosec
This is the required particular solution of the given
differential equation.
MPP-4 CLASS XI ANSWER KEY
- (d) 2. (b) 3. (c) 4. (a) 5. (c)
- (b) 7. (a, b) 8. (c) 9. (b,c,d) 10. (a,b,c)
- (a,b) 12. (b,c) 13. (a,b,c) 14. (c) 15. (d)
- (d) 17. (7) 18. (6) 19. (6) 20. (3)