- In a triangle ABC, 2
2 22
cosAC ac.
acac
− = +
+ −
Then
(a) B = π/3 (b) B = C
(c) A, B, C are in A.P.
(d) B + C = A
- A line parallel to the line x – 3y = 2 touches the
circle x^2 + y^2 – 4x + 2y – 5 = 0 at the point
(a) (1, –4) (b) (1, 2)
(c) (3, –4) (d) (3, 2)
SOLUTIONS - (a) : The total number of ways, the person can
select n coins from 2n + 1 coins is
21
1
21
2
21
3
nn n 21 n 255
CC C Cn
++ +++++=... +
⇒ 1 ++ + ++ =+^21 nn n++ +CC C 1 212 213 ...^21 n+Cn 255 1
⇒^1 + = ⇒ = ⇒ = ⇒ =
2
() 221 nn 256 2228 2 nn 8 4.
- (b) : The word ARRANGE consist of 7 letters.
Among these 7 letters there are two R’s and two A’s. No.
of ways of arranging the letters such that two R’s are
always together =^6
2
!
!
∴ The numbers of words where two R’s do not come
together are^7
22
6
2
6
2
7
2
1 6
2
5
2
! 900
!!
!
!
!
!
!
!
− = ⎜⎛⎝ −⎞⎠⎟= ⋅ =.
- (c) : After giving the largest fruit to the youngest boy,
the remaining 5 fruits can be given to the remaining 5
boys in 5! ways, i.e. in 120 ways. - (b) : We k n o w t h a t
n
r n r
n
r
r
n n
r
r
P n
r
C P
r
C
!!
= ⇒ =
==
∑∑
11
Now nr
r
n nnnn n
n
CC CCC C Cn
=
∑ =+ ++++−
1
0123 ( ... ) 0
=+++++( ... )− = −
nnnnCCCC 0123 nC Cn nn 021
- (c) : We h a v e^474523
1
5
CCj
j
+ −
=
∑
= +++++
(^47) CCCCCC 4 51 3 50 3 49 3 48 3 47 3
= + ++++()
47
4
47
3
48
3
49
3
50
3
51
CC CCCC 3
=++++()
48
4
48
3
49
3
50
3
51
CC CCC (^3)
=+++()
(^49) CC CC 4 49 3 50 3 51 3
=++=+=()()
(^50) CC C CC C 4 50 3 51 3 51 4 51 3 52 4
- (a) : The required number of numbers are
5! + (5! – 4!) = 120 + 96 = 216 - (b) : To form a circle atleast 3 points are required.
∴ Number of circles which can be drawn by 9 points
=^9 C 3 , but given that 4 points are concyclic.
Therefore, instead of getting^4 C 3 number of circles we
get only one circle.
Hence total number of required circles is
9 C 3 –^4 C 3 + 1 = 81 - (b) : The arrangement of lectures of the 5 persons
may be done as (AC)BDE, where C always deliver lecture
after A. Thus total number of such arrangements are
4! = 24 - (b) : We h a v e 34 sinxx+=cos
3
2
1
2
⇒ sinxx+=cos 2
⇒ sin sinxxππ+=cos cos
33
2
⇒−cos⎝⎜⎛x π⎟⎞⎠=
3
2 , which is impossible.
As we know that −≤ ⎛ −
⎝⎜
⎞
1 cos x 3 ⎠⎟≤ 1
π.
- (d) : We h a v e 522
2
cosθ++=<<cos^2 θ 100 , θπ
⇒ 5cos2θ + 1 + cosθ + 1 = 0
⇒ 5(2cos^2 θ – 1) + cosθ + 2 = 0
⇒ 10cos^2 θ + cosθ – 3 = 0
⇒ (2cosθ – 1)(5cosθ + 3) = 0
∴ θ==π θπ−−⎜⎝⎛− ⎠⎟⎞= − ⎝⎛⎜ ⎠⎟⎞
3
3
5
3
5
and cos^11 cos
()∵ 0 <<θπ
- (a) : We h a v e logcosθθtanθθ+=logsin cot 0
⇒−logcosθθtanθθlogsin tan = 0
⇒ log tan =
log cos
log tan
log sin
θ
θ
θ
θ
⇒ log sin =
log cos
θ
θ
1
⇒⇒logcosθsinθθθθ= 1 cos =sin ⇒tan =tanπ
4
∴ θπ=+nnZπ ∈
4
,.