- (a) : Let P(h, k) divides the chord AB in the ratio
2 : 1. OD⊥AB, where O is the centre of the circle
and D is the foot of the perpendicular drawn from the
centre O.
Now, OB== 10 ;.OD (^1)
∴ DB= 10 1− = 3 ∴AB== 2 ;.DB (^6)
∵ AP PB::= 21 ∴PB==^1 AB
3
2
∴ DP=DB−PB=321.− =
Now, from ΔODP, we have
OP^2 = OD^2 + DP^2 ⇒ h^2 + k^2 = 1 + 1 = 2
∴ locus of the point (h, k) is x^2 + y^2 = 2
- (c) : The line y = x cuts the circle x^2 + y^2 – 2x = 0 at
the points A(0, 0) and B(1, 1). Therefore the equation of
the circle, whose diameter is AB, is
(x – 0)(x – 1) + (y – 0)(y – 1) = 0
⇒ x^2 + y^2 – x – y = 0 - (c) : Let the line 3x + y + 5 = 0 cut the circle x^2 + y^2 = 16
at the points A and B, hence AB is a chord of the circle.
The mid-point of the chord AB is ⎜⎛⎝−−^3 ⎞⎠⎟
2
1
2
, (the foot
of the perpendicular from the centre to the chord) and
length of the chord AB=×^216 − =
25
10
2 27
2
.
∴ Centre of the circle, whose diameter is AB, is
⎛⎝⎜−−^3 ⎞⎠⎟ ==
2
1
2
1
2
27
2
,. and its radius AB
Thus the equation of the circle is
⎛⎜⎝xy+^3 ⎠⎞⎟ ++⎝⎛⎜ ⎞⎠⎟ =
2
1
2
27
2
22
⇒ x^2 + y^2 + 3x + y = 11
- (b) : Given that, a
cos^22 C ccos Ab
22
3
2
+=
⇒ a(1 + cosC) + c(1 + cosA) = 3b
⇒ a + c + (acosC + ccosA) = 3b
⇒ a + c + b = 3b (∵ acosC + ccosA = b)
⇒ a + c = 2b, i.e. a, b, c are in A.P.
- (b) : We have 3cosx + 4sinx = 2k + 1
⇒
+
+
+
= +
+
3
34
4
34
21
22 22 3422
cosxxsin k
⇒^3 +=+
5
4
5
21
5
cosxxsin k
⇒−cos(x ααα)=^21 k+ , cos ==, sin
5
3
5
4
5
where
∵ −≤ − ≤ ⇒−≤ 11121 + ≤
5
cos(x α) k 1
⇒ –5 ≤ 2 k + 1 ≤ 5 ⇒ –6 ≤ 2 k ≤ 4
Therefore integral values of k are –3, –2, –1, 0, 1, 2
∴ Required number is 6.
- (d) : The word ‘COMBINE’ is consisting of 7 letters.
There are 3 vowels namely- E, I and O.
The two vowels for beginning and ending place can
be arranged in^3 P 2 ways. For each of the^3 P 2 ways the
remaining 5 letters can be arranged in 5! ways.
Therefore required number is^3 P 2 × 5! = 720. - (c, d) : Given that nC 4 , nC 5 and nC 6 are in A.P.
∴⋅
−
=
−
+
−
2
554466
n
n
n
n
n
n
!
!( )!
!
!( )!
!
!( )!
⇒
−
=
−−
+
×
2
55
1
45
1
()()()nnn 65
⇒
−
= −−+
−−
12
5
4530
() 45
()()
n ()()
nn
nn
⇒ n^2 – 9n + 50 = 12(n – 4) ⇒ n^2 – 21n + 98 = 0
⇒ n^2 – 14n – 7n + 98 = 0 ⇒ (n – 14)(n – 7) = 0
⇒ n = 14 or n = 7
- (b, d) : We know that |cosx| ≥ 0
⇒ sinx ≥ 0. So, there is no x in (π, 2π).
Now, if x = 2π, |cos2π| ≤ sin2π, which is not true.
So, 0 ≤ x ≤ π
If 0 ≤≤xxxxxπ then ≤ ⇒ ≤
2
cos sin cos sin
⇒≥∴≤≤tanxx 1
42
ππ
If π π
2
≤≤xxx then cos ≤sin
⇒ –cosx ≤ sinx ⇒ tanx ≤ –1 (∵ cosx < 0)
∴ ππ< ≤
2
3
4
x
∴∈⎡
⎣⎢
⎤
⎦⎥
∪⎡
⎣⎢
⎤
⎦⎥
x ππ π π
42 2
3
4
,,.
Solution Sender of Maths Musing
SET-164
- Akash Banerjee W.B.
- Sk. Izajur Rahaman W.B.
- N. Jayanthi Hyderabad
- Khokon Kumar Nandi W.B.