Biophotonics_Concepts_to_Applications

(Dana P.) #1

  • 1 Overview of Biophotonics...............................

    • 1.1 What Is Biophotonics?

    • 1.2 Diverse Applications

    • 1.3 Biophotonics Spectral Windows.

    • 1.4 Light Absorption

    • 1.5 Signal Attenuation

    • 1.6 Structures of Biological Cells and Tissues.

      • 1.6.1 Macromolecules.

      • 1.6.2 Biological Cells

      • 1.6.3 Biological Tissues and Organs.



    • 1.7 Summary

    • 1.8 Problems.

    • References



  • 2 Basic Principles of Light...............................

    • 2.1 Lightwave Characteristics

      • 2.1.1 Monochromatic Waves

      • 2.1.2 Pulsed Plane Waves



    • 2.2 Polarization.

      • 2.2.1 Linear Polarization

      • 2.2.2 Elliptical and Circular Polarization



    • 2.3 Quantized Photon Energy and Momentum

    • 2.4 Reflection and Refraction

      • 2.4.1 Snells’Law...............................

      • 2.4.2 The Fresnel Equations

      • 2.4.3 Diffuse Reflection



    • 2.5 Interference

    • 2.6 Optical Coherence

    • 2.7 Lightwave-Molecular Dipole Interaction

    • 2.8 Summary

    • 2.9 Problems.

    • References



  • 3 Optical Fibers for Biophotonics Applications.................

    • 3.1 Light Guiding Principles in Conventional Optical Fibers.

      • 3.1.1 Ray Optics Concepts

      • 3.1.2 Modal Concepts.

      • 3.1.3 Mode Field Diameter



    • 3.2 Graded-Index Optical Fibers

      • 3.2.1 Core Index Structure

      • 3.2.2 Graded-Index Numerical Aperture

      • 3.2.3 Cutoff Condition in Graded-Index Fibers.



    • 3.3 Performance Characteristics of Generic Optical Fibers

      • 3.3.1 Attenuation Versus Wavelength

      • 3.3.2 Bend-Loss Insensitivity.

      • 3.3.3 Mechanical Properties.

      • 3.3.4 Optical Power-Handling Capability.



    • 3.4 Conventional Solid-Core Fibers

    • 3.5 Specialty Solid-Core Fibers

      • 3.5.1 Photosensitive Optical Fiber

      • 3.5.2 Fibers Resistant to UV-Induced Darkening

      • 3.5.3 Bend Insensitive Fiber

      • 3.5.4 Polarization-Maintaining Fiber



    • 3.6 Double-Clad Fibers

    • 3.7 Hard-Clad Silica Fibers.

    • 3.8 Coated Hollow-Core Fibers

    • 3.9 Photonic Crystal Fibers.

    • 3.10 Plastic Fibers.

    • 3.11 Side-Emitting or Glowing Fibers

    • 3.12 Middle-Infrared Fibers

    • 3.13 Optical Fiber Bundles.

    • 3.14 Summary

    • 3.15 Problems.

    • References



  • 4 Fundamentals of Light Sources...........................

    • 4.1 Radiometry

      • 4.1.1 Optical Flux and Power

      • 4.1.2 Irradiance or Exposure Rate

      • 4.1.3 Radiant Intensity

      • 4.1.4 Radiant Exposure or Radiant Fluence

      • 4.1.5 Radiance.



    • 4.2 Arc Lamps

    • 4.3 Light-Emitting Diodes

      • 4.3.1 LED Operation and Structures

      • 4.3.2 LED Wavelengths and Device Uses

      • 4.3.3 Modulation of an LED



    • 4.4 Lasers for Biophotonics

      • 4.4.1 Basic Laser Actions

      • 4.4.2 Laser Diodes

      • 4.4.3 Solid-State Lasers

      • 4.4.4 Gas Lasers

      • 4.4.5 Optical Fiber Lasers



    • 4.5 Superluminescent Diodes

    • 4.6 Summary

    • 4.7 Problems.

    • References



  • 5 Fundamentals of Optical Detectors........................

    • 5.1 ThepinPhotodetector.

    • 5.2 Avalanche Photodiodes.

    • 5.3 Photodiode Noises

      • 5.3.1 Signal-to-Noise Ratio

      • 5.3.2 Noise Sources

      • 5.3.3 Noise-Equivalent Power and Detectivity

      • 5.3.4 Comparisons of Photodiodes



    • 5.4 Multichannel Detectors

      • 5.4.1 CCD Array Technology

      • 5.4.2 CMOS Array Technology



    • 5.5 Photomultiplier Tubes.

    • 5.6 Optical Filters

    • 5.7 Optical Couplers and Optical Circulators.

    • 5.8 Summary

    • 5.9 Problems.

    • References



  • 6 Light-Tissue Interactions...............................

    • 6.1 Reflection and Refraction Applications

      • 6.1.1 Refraction in Ophthalmology.

      • 6.1.2 Specular Reflection

      • 6.1.3 Diffuse Reflection



    • 6.2 Absorption

      • 6.2.1 Absorption Characteristics.

      • 6.2.2 Absorption in Biological Tissues



    • 6.3 Scattering

      • 6.3.1 Elastic Scattering

      • 6.3.2 Rayleigh Scattering

      • 6.3.3 Anisotropy Factor

      • 6.3.4 Inelastic (Raman) Scattering



    • 6.4 Scattering with Absorption

    • 6.5 Light-Tissue Interaction Mechanisms

      • 6.5.1 Photobiomodulation

      • 6.5.2 Photochemical Interaction

      • 6.5.3 Thermal Interaction

      • 6.5.4 Photoablation.

      • 6.5.5 Plasma-Induced Photoablation

      • 6.5.6 Photodisruption



    • 6.6 Formation of Speckles

    • 6.7 Fluorescence Basics

    • 6.8 Summary

    • 6.9 Problems.

    • References



  • 7 Optical Probes and Biosensors...........................

    • 7.1 Overview of Biosensors and Probes

    • 7.2 Optical Fiber Probe Configurations.

    • 7.3 Optical Fiber Tip Geometries

    • 7.4 Optical Sensors

      • 7.4.1 Biorecognition Optical Fiber Sensors

      • 7.4.2 ELISA

      • 7.4.3 Sensors Based on Optical Fiber Movements

      • 7.4.4 Microbending Fiber Sensors



    • 7.5 Interferometric Sensors

      • 7.5.1 Mach-Zehnder Interferometer.

      • 7.5.2 Michelson Interferometer

      • 7.5.3 Sagnac Interferometer



    • 7.6 Photonic Crystal Fiber Biosensors

      • 7.6.1 Interferometry Sensing Methods.

      • 7.6.2 Liquid Infiltration Sensor



    • 7.7 Fiber Bragg Grating Sensors

      • 7.7.1 Smart-Bed FBG System

      • 7.7.2 Distributed FBG-Based Catheter Sensor



    • 7.8 Surface Plasmon Resonance Biosensors

    • 7.9 Optical Fiber Nanoprobes

    • 7.10 Summary

    • 7.11 Problems.

    • References



  • 8 Microscopy.........................................

    • 8.1 Concepts and Principles of Microscopy.

      • 8.1.1 Viewing and Illumination Techniques.

      • 8.1.2 Observation Methods

      • 8.1.3 Numerical Aperture

      • 8.1.4 Field of View

      • 8.1.5 Depth of Field



    • 8.2 Resolution and Diffraction Limit

    • 8.3 Confocal Microscopy

    • 8.4 Fluorescence Microscopy

    • 8.5 Multiphoton Microscopy.

    • 8.6 Raman Microscopy

    • 8.7 Light Sheet Fluorescence Microscopy.

    • 8.8 Super-Resolution Fluorescence Microscopy

    • 8.9 Summary

    • 8.10 Problems.

    • References



  • 9 Spectroscopic Methodologies.............................

    • 9.1 Fluorescence Spectroscopy

    • 9.2 FRET/FLIM

      • 9.2.1 Förster Resonance Energy Transfer

      • 9.2.2 Fluorescence Lifetime Imaging Microscopy.



    • 9.3 Fluorescence Correlation Spectroscopy

    • 9.4 Elastic Scattering Spectroscopy

    • 9.5 Diffuse Correlation Spectroscopy

    • 9.6 Raman Spectroscopy

    • 9.7 Surface Enhanced Raman Scattering Spectroscopy

    • 9.8 Coherent Anti-stokes Raman Scattering Spectroscopy.

    • 9.9 Stimulated Raman Scattering Spectroscopy

    • 9.10 Photon Correlation Spectroscopy

    • 9.11 Fourier Transform Infrared Spectroscopy

    • 9.12 Brillouin Scattering Spectroscopy.

    • 9.13 Summary

    • 9.14 Problems.

    • References



  • 10 Optical Imaging Procedures.............................

    • 10.1 Optical Coherence Tomography.

      • 10.1.1 Time Domain OCT

      • 10.1.2 Spectral Domain OCT

      • 10.1.3 Swept Source OCT



    • 10.2 Endoscopy

      • 10.2.1 Basic Endoscopy

      • 10.2.2 Minimally Invasive Surgery.

      • 10.2.3 Tethered Capsule Endomicroscopy



    • 10.3 Laser Speckle Imaging

    • 10.4 Optical Coherence Elastography.

    • 10.5 Photoacoustic Tomography

    • 10.6 Hyperspectral Imaging

    • 10.7 Summary

    • 10.8 Problems.

    • References



  • 11 Biophotonics Technology Applications

    • 11.1 Optical Manipulation

    • 11.2 Miniaturized Analyses Tools

      • 11.2.1 Lab-on-a-Chip Technology

      • 11.2.2 Lab-on-Fiber Concept.



    • 11.3 Microscope in a Needle

    • 11.4 Single Nanoparticle Detection

    • 11.5 Neurophotonics

    • 11.6 Summary

    • 11.7 Problems.

    • References



  • Index.................................................

Free download pdf