Lake Pavin History, geology, biogeochemistry, and sedimentology of a deep meromictic maar lake

(Chris Devlin) #1
283

Nüsslein B, Eckert W, Conrad R (2003) Stable isotope biogeochemistry
of methane formation in profundal sediments of Lake Kinneret
(Israel). Limnol Oceanogr 48:1439–1446
Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria
from hypersaline environments. Microbiol Rev 58:27–38
Omil F, Lens P, Visser A, Hulshoff Pol LW, Lettinga G (1998) Long-
term competition between sulfate reducing and methanogenic bac-
teria in UASB reactors treating volatile fatty acids. Biotechnol
Bioeng 57:676–685
Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A,
Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009)
Environmental, genomic and taxonomic perspectives on methano-
trophic Verrucomicrobia. Environ Microbiol Rep 1:293–306
Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction:
competitive and noncompetitive substrates in estuarine sediments.
Appl Environ Microbiol 44:1270–1276
Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF
(2001) Methane-consuming archaea revealed by directly coupled
isotopic and phylogenetic analysis. Science 293:484–487
Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov.
(“Methanothrix concilii”) and Methanosaeta thermoacetophila
nom. rev., comb. nov. Int J Syst Bacteriol 40:79–82
Paul K, Nonoh JO, Mikulski L, Brune A (2012) “Methanoplasmatales”,
Thermoplasmatales-related archaea in termite guts and other envi-
ronments, are the seventh order of methanogens. Appl Environ
Microbiol 78:8245–8253
Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R (2000)
Greenhouse warming by CH 4 in the atmosphere of early Earth.
J Geophys Res 105:11981–11990
Pernthaler A, Orphan VJ (2010) U.S. Patent No. 7736855. Process for
separating microorganisms. U.S. Patent and Trademark Office,
Washington, DC
Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ
hybridization and catalyzed reporter deposition for the identifica-
tion of marine bacteria. Appl Environ Microbiol 68:3094–3101
Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan
VJ (2008) Diverse syntrophic partnerships from deep-sea methane
vents revealed by direct cell capture and metagenomics. Proc Natl
Acad Sci U S A 105:7052–7057
Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, den Camp
H (2007) Methanotrophy below pH1 by a new Verrucomicrobia
species. Nature 450:817–874
Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N,
Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W,
Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic
Thermoplasmata implicated in reduced methane emissions from
bovine rumen. Nat Commun 4:1428
Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP,
Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp
HJM et al (2006) A microbial consortium couples anaerobic meth-
ane oxidation to denitrification. Nature 440:918–921
Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide
dehydrogenase/acetyl-CoA synthase. Chem Rev 96:2515–2539
Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljundahl
pathway of CO 2 fixation. Biochim Biophys Acta 1784:1873–1898
Ravussin E, Burnand B, Schutz Y, Jéquier E (1982) Twenty-four-hour
energy expenditure and resting metabolic rate in obese, moderately
obeses and control subjects. Am J Clin Nutr 35:566–573
Reeburgh WS (2003) Global methane biogeochemistry. In: Keeling RF,
Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 4,
The atmosphere. Elsevier-Pergamon, Oxford, pp 65–89
Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key
nickel enzyme of methanogenesis catalyses the anaerobic oxidation
of methane. Nature 465:606–608
Schimel J (2004) Playing scales in the methane cycle: from microbial
ecology to the globe. Proc Natl Acad Sci USA 101:12400–12401


Schink B (1997) Energetics of syntrophic cooperations in methano-
genic degradation. Microbiol Mol Biol Rev 61:262–280
Schink B, Stams AJM (2001) Syntrophism among prokaryotes. In:
Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E
(eds) The prokaryotes: an evolving electronic resource for the
microbiological community, 3rd edn. Springer, New York, p 25
Schonheit P, Keweloh H, Thauer RK (1981) Factor F420 degradation in
Methanobacterium thermoautotrophicum during exposure to oxy-
gen. FEMS Microbiol Lett 12:347–349
Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M,
Boetius A (2011) Evidence for anaerobic oxidation of methane in
sediments of a freshwater system (Lago di Cadagno). FEMS
Microbiol Ecol 76:26–38
Schulz S, Conrad R (1996) Influence of temperature on pathways to
methane production in the permanently cold profundal sediment of
Lake Constance. FEMS Microbiol Ecol 20:1–14
Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE
(2009) Improved attribution of climate forcing to emissions. Science
326:716–718
Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into
syntrophy: the paradigm for anaerobic metabolic cooperation. Annu
Rev Microbiol 66:429–452
Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten metha-
nogen? Trends Microbiol 15:150–155
Smith RL, Howes BL, Garabedian SP (1991) In situ measurement of
methane oxidation in groundwater by using natural-gradient tracer
tests. Appl Environ Microbiol 57:1997–2004
Sohngen NL (1906) Uber bakterien welche methan ab kohlenstoffnah-
rung und energiequelle gerbrauchen (Les bactéries qui utilisent le
méthane comme source d’énergie et de carbone). Z Bakteriol
Parazitenk (Infektionster) 15:513–517
Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JHP, Keltjens
JT (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a
methanol- and methylamine-reducing methanogen from the hindgut
of the cockroach Periplaneta americana. Int J Syst Evol Microbiol
50:1989–1999
Sprenger WW, Hackstein JHP, Keltjens JT (2005) The energy metabo-
lism of Methanomicrococcus blatticola: physiological and bio-
chemical aspects. Antonie Van Leeuwenhoek 87:289–299
Stams AJM, Plugge CM (2009) Electron transfer in syntrophic com-
munities of anaerobic bacteria and archaea. Nat Rev Microbiol
7:568e577
Stephenson M (1947) Some aspects of hydrogen transfer. Ant v
Leeuwenhoek 12:33–48
Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi
C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is
a filamentous methane oxidizer with an unusual methane monooxy-
genase. Proc Natl Acad Sci U S A 103:2363–2367
Tewes FJ, Thauer RK (1980) Regulation of ATP synthesis in glucose
fermenting bacteria involved in interspecies hydrogen transfer. In:
Gottschalk G, Pfennig N, Werner H (eds) Anaerobes and anaerobic
infections. G. Fischer, Stuttgart, pp 97–104
Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorgan-
isms. Ann NY Acad Sci 1125:158–170
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008)
Methanogenic archaea: ecologically relevant differences in energy
conservation. Nat Rev Microbiol 6:579–591
Trembath-Reichert E, Green-Saxena A, Orphan VJ (2013) Whole cell
immunomagnetic enrichment of environmental microbial consortia
using rRNA-targeted Magneto-FISH. Methods Enzymol
531:21–44
Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate
methanotrophy. Adv Appl Microbiol 63:183–229
Van Bodegom PM, Scholten JCM, Roden EE, Stams AJM (2004)
Direct inhibition of methanogenesis by ferric iron. FEMS Microb
Ecol 49:261–268

16 Methanogens and Methanotrophs in Lake Pavin


http://www.ebook3000.com

Free download pdf