The Lotus japonicus Genome

(Steven Felgate) #1

Carroll B, Gresshoff PM (1983) Nitrate inhibition of
nodulation and nitrogenfixation in white clover. Z
Pflanzenphysiol 110:69– 76
Carroll B, Mathews A (1990) Nitrate inhibition of nodula-
tion in legumes. In: Gresshoff PM (ed) Molecular
biology of symbiotic nitrogenfixation, pp 159– 180
Chiang CS, Stacey G, Tsay YF (2004) Mechanisms and
functional properties of two peptide transporters,
AtPTR2 and fPTR2. J Biochem Chem
279:30150– 30157
Cho M, Harper JE (1991) Effect of localized nitrate
application on isoflavonoid concentration and nodula-
tion in split-root systems of wild-type and nodulation-
mutant soybeans plants. Plant Physiol 95:1106– 1112
Chopin F, Orsel M, Dorbe MF et al (2007) The
ArabidopsisATNRT2.7 nitrate transporter controls
nitrate content in seeds. Plant Cell 19:1590– 1602
Colebatch G, Desbrosses G, Ott T (2004) Global changes
in transcription orchestrate metabolic differentiation
during symbiotic nitrogenfixation inLotus japonicus.
Plant J 39:487– 512
Criscuolo G, Valkov VT, Parlati A et al (2012) Molecular
characterization of theLotus japonicusNRT1(PTR)
and NRT2 families. Plant Cell Environ 35:1567– 1581
Day DA, Carroll BJ, Delves AC et al (1989) Relationship
between autoregulation and nitrate inhibition of nod-
ulation in soybeans. Physiol Plant 75:37– 42
Dechorgnat J, Patrit O, Krapp A et al (2012) Character-
ization of the Nrt2.6 gene in Arabidopsis thaliana: a
link with plant response to biotic and abiotic stress.
PLoS ONE 7:e42491. doi:10.1371/journal.pone.
0042491
Ding Y, Oldroyd GE (2009) Positioning the nodule, the
hormone dictum. Plant Signal Behav 4:89– 93
Frommer WB, Hummel S, Rentsch D (1994) Cloning of
anArabidopsishistidine transporting protein related to
nitrate and peptide transporters. FEBS Lett
347:185– 189
Fujikake H, Yamazaki A, Ohtake N et al (2003) Quick
and reversible inhibition of soybean root nodule
growth by nitrate involves a decrease in sucrose
supply to nodules. J Exp Bot 54:1379– 1388
Fukai E, Soyano T, Umehara Y et al (2012) Establishment
of aLotus japonicusgene tagging population using the
exon-targeting endogenous retrotransposon LORE1.
Plant J 69:720– 730
Glass AD, Kotur Z (2013) A reevaluation of the role of
Arabidopsis NRT1.1 in high-affinity nitrate transport.
Plant Physiol 163:1103– 1106
Gojon A, Krouk G, Perrine-Walker F et al (2011) Nitrate
transceptor(s) in plants. J Exp Bot 62:2299– 2308
Ho CH, Lin SH, Hu HC et al (2009) CHL1 functions as a
nitrate sensor in plants. Cell 138:1184– 1194
Høgslund N, Radutoiu S, Krusell L et al (2009) Organ
development by integrated transcriptome analysis of
Lotus japonicusmutant and wild-type plants. PloS
One 7; 4(8):e6556. doi:10.1371/journal.pone.0006556
Horchani F, Prèvot M, Boscari A et al (2011) Both plant
and bacterial nitrate reductase contribute to nitric


oxide production inMedicago truncatulanitrogen-
fixing nodules. Plant Physiol 155:1023– 1036
Jeong J, Suh S, Guan C et al (2004) A nodule-specific
dicarboxylate transporter from alder is a member of
the peptide transporter family. Plant Physiol
134:969– 978
Jeudy C, Ruffell S, Freixes S et al (2010) Adaptation of
Medicago truncatulato nitrogen limitation is modu-
lated via local and systemic nodule developmental
responses. New Phytol 185:817– 828
Kanno Y, Hanada A, Chiba Y et al (2012) Identification
of an abscisic acid transporter by functional screening
using the receptor complex as a sensor. Proc Natl
Acad Sci 109:9653– 9658
Kiba T, Feria-Bourrellier AB, Lafouge F et al (2012) The
Arabidopsisnitrate transporter NRT2.4 plays a double
role in roots and shoots of nitrogen-starved plants.
Plant Cell 24:245– 258
Kouchi H, Shimomura K, Hata S et al (2004) Large-scale
analysis of gene expression profiles during early
stages of root nodule formation in a model legume,
Lotus japonicus. DNA Res 11:263– 274
Krouk G, Lacombe B, Bielach A et al (2010) Nitrate-
regulated auxin transport by NRT1.1 defines a mech-
anism for nutrient sensing in plants. Dev Cell
18:927– 937
Leran S, Varala K, Boyer J-C et al (2014) A unified
nomenclature of Nitrate Transporter 1/Peptide trans-
porter family members in plants. Trends Plant Sci
19:5– 9
Lin W, Wang Y, Okamoto M, Crawford NM et al (2007)
Dissection of the AtNRT2.1:AtNRT2.2 inducible
high-affinity nitrate transporter gene cluster. Plant
Physiol 143:425– 433
Lin CM, Koh S, Stacey G et al (2000) Cloning and
functional characterization of a constitutively
expressed nitrate transporter gene OsNRT1 from rice.
Plant Physiol 122:379– 388
Little D, Rao H, Oliva S, Daniel-Vedele F et al (2005)
The putative high-affinity nitrate transporter NTR2.1
represses lateral root initiation in response to nutri-
tional cues. Proc Natl Acad Sci 102:13693– 13698
Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-
affinity nitrate transporter ofArabidopsisinvolved in
multiple phases of nitrate uptake. Plant Cell
11:865– 874
Liu KH, Tsay YF (2003) Switching between the two
action modes of the dual-affinity nitrate transporter
CHL1 by phosphorylation. EMBO J 22:1005– 1013
Matamoros MA, Baird LM, Escuredo PR et al (1999)
Stress-induced legume root nodule senescence. Phys-
iological, biochemical, and structural alterations. Plant
Physiol 121:97– 112
Miller AJ, Fan X, Orsel M et al (2007) Nitrate transport
and signalling. J Exp Bot 58:2297– 2306
Morère-Le Paven MC, Viau L, Hamon A et al (2011)
Characterization of a dual-affinity nitrate transporter
MtNRT1.3 in the model legumeMedicago truncatula.
J Exp Bot 62:5595– 5605

12 Nitrate Transport and Signaling 135

Free download pdf