Vertebrate Development Maternal to Zygotic Control (Advances in Experimental Medicine and Biology)

(nextflipdebug2) #1

206


Sonnenberg A, Liem RK (2007) Plakins in development and disease. Exp Cell Res 313:
2189–2203
Staudt N, Molitor A, Somogyi K, Mata J, Curado S, Eulenberg K, Meise M, Siegmund T, Hader
T, Hilfiker A et al (2005) Gain-of-function screen for genes that affect Drosophila muscle pat-
tern formation. PLoS Genet 1:e55
Strasser MJ, Mackenzie NC, Dumstrei K, Nakkrasae LI, Stebler J, Raz E (2008) Control over the
morphology and segregation of Zebrafish germ cell granules during embryonic development.
BMC Dev Biol 8:58
Tao Q, Yokota C, Puck H, Kofron M, Birsoy B, Yan D, Asashima M, Wylie CC, Lin X, Heasman
J (2005) Maternal wnt11 activates the canonical wnt signaling pathway required for axis for-
mation in Xenopus embryos. Cell 120:857–871
Tarbashevich K, Koebernick K, Pieler T (2007) XGRIP2.1 is encoded by a vegetally localizing,
maternal mRNA and functions in germ cell development and anteroposterior PGC positioning
in Xenopus laevis. Dev Biol 311:554–565
Toretsky JA, Wright PE (2014) Assemblages: functional units formed by cellular phase separation.
J Cell Biol 206:579–588
Ukeshima A, Fujimoto T (1991) A fine morphological study of germ cells in asymmetrically
developing right and left ovaries of the chick. Anat Rec 230:378–386
van Boxtel AL, Chesebro JE, Heliot C, Ramel MC, Stone RK, Hill CS (2015) A temporal window
for signal activation dictates the dimensions of a nodal signaling domain. Dev Cell
35:175–185
Varga M, Maegawa S, Bellipanni G, Weinberg ES (2007) Chordin expression, mediated by Nodal
and FGF signaling, is restricted by redundant function of two beta-catenins in the zebrafish
embryo. Mech Dev 124:775–791
Wagner DS, Dosch R, Mintzer KA, Wiemelt AP, Mullins MC (2004) Maternal control of develop-
ment at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell
6:781–790
Wang JT, Smith J, Chen BC, Schmidt H, Rasoloson D, Paix A, Lambrus BG, Calidas D, Betzig E,
Seydoux G (2014) Regulation of RNA granule dynamics by phosphorylation of serine-rich,
intrinsically disordered proteins in C. elegans. Elife 3:e04591
Weakley BS (1967) “Balbiani’s body” in the oocyte of the golden hamster. Z Zellforsch Mikrosk
Anat 83:583–588
Weeks DL, Melton DA (1987) A maternal mRNA localized to the animal pole of Xenopus eggs
encodes a subunit of mitochondrial ATPase. Proc Natl Acad Sci U S A 84:2798–2802
Whitington PM, Dixon KE (1975) Quantitative studies of germ plasm and germ cells during early
embryogenesis of Xenopus laevis. J Embryol Exp Morphol 33:57–74
Wilk K, Bilinski S, Dougherty MT, Kloc M (2005) Delivery of germinal granules and localized
RNAs via the messenger transport organizer pathway to the vegetal cortex of Xenopus oocytes
occurs through directional expansion of the mitochondrial cloud. Int J Dev Biol 49:17–21
Wu X, Kodama A, Fuchs E (2008) ACF7 regulates cytoskeletal-focal adhesion dynamics and
migration and has ATPase activity. Cell 135:137–148
Wu X, Shen QT, Oristian DS, Lu CP, Zheng Q, Wang HW, Fuchs E (2011) Skin stem cells orches-
trate directional migration by regulating microtubule-ACF7 connections through GSK3beta.
Cell 144:341–352
Xanthos JB, Kofron M, Wylie C, Heasman J (2001) Maternal VegT is the initiator of a molecular
network specifying endoderm in Xenopus laevis. Development 128:167–180
Xiol J, Spinelli P, Laussmann MA, Homolka D, Yang Z, Cora E, Coute Y, Conn S, Kadlec J,
Sachidanandam R et al (2014) RNA clamping by Vasa assembles a piRNA amplifier complex
on transposon transcripts. Cell 157:1698–1711
Xu P, Zhu G, Wang Y, Sun J, Liu X, Chen YG, Meng A (2014) Maternal Eomesodermin regulates
zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell
Biol 6:272–285
Yan W, Ma L, Zilinski CA, Matzuk MM (2004) Identification and characterization of evolutionarily
conserved pufferfish, zebrafish, and frog orthologs of GASZ. Biol Reprod 70:1619–1625


M. Escobar-Aguirre et al.
Free download pdf