Vertebrate Development Maternal to Zygotic Control (Advances in Experimental Medicine and Biology)

(nextflipdebug2) #1

434


Kogo N, Tazaki A, Kashino Y, Morichika K, Orii H, Mochii M, Watanabe K (2011) Germ-line
mitochondria exhibit suppressed respiratory activity to support their accurate transmission to
the next generation. Dev Biol 349(2):462–469. doi:10.1016/j.ydbio.2010.11.021
Koprunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the
development of primordial germ cells. Genes Dev 15(21):2877–2885. doi:10.1101/gad.212401
Kosaka K, Kawakami K, Sakamoto H, Inoue K (2007) Spatiotemporal localization of germ plasm
RNAs during zebrafish oogenesis. Mech Dev 124(4):279–289. doi:10.1016/j.mod.2007.01.003
Kotani M (1957) On the formation of the primordial germ cells from the presumptive ectoderm of
Triturus gastrulae. J Inst Polytech Osaka City Univ 8:145–159
Kotani T, Yasuda K, Ota R, Yamashita M (2013) Cyclin B1 mRNA translation is temporally con-
trolled through formation and disassembly of RNA granules. J Cell Biol 202(7):1041–1055.
doi:10.1083/jcb.201302139
Ku M, Melton DA (1993) Xwnt-11: a maternally expressed Xenopus wnt gene. Development
119(4):1161–1173
Kuo MW, Wang SH, Chang JC, Chang CH, Huang LJ, Lin HH, Yu AL, Li WH, Yu J (2009) A
novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes
and primordial germ-cells. PLoS One 4(3):e4980. doi:10.1371/journal.pone.0004980
Kurimoto K, Yabuta Y, Ohinata Y, Shigeta M, Yamanaka K, Saitou M (2008) Complex genome-
wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lin-
eage in mice. Genes Dev 22(12):1617–1635. doi:10.1101/gad.1649908
Labosky PA, Barlow DP, Hogan BL (1994) Mouse embryonic germ (EG) cell lines: transmission
through the germline and differences in the methylation imprint of insulin-like growth factor 2
receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development
120(11):3197–3204
Lai F, King ML (2013) Repressive translational control in germ cells. Mol Reprod Dev 80(8):665–



  1. doi:10.1002/mrd.22161
    Lai F, Singh A, King ML (2012) Xenopus Nanos1 is required to prevent endoderm gene expres-
    sion and apoptosis in primordial germ cells. Development 139(8):1476–1486. doi:10.1242/
    dev.079608
    Lai F, Zhou Y, Luo X, Fox J, King ML (2011) Nanos1 functions as a translational repressor in the
    Xenopus germline. Mech Dev 128(1–2):153–163. doi:10.1016/j.mod.2010.12.001
    Laird DJ, De Tomaso AW, Weissman IL (2005) Stem cells are units of natural selection in a colo-
    nial ascidian. Cell 123(7):1351–1360. doi:10.1016/j.cell.2005.10.026
    Langley AR, Smith JC, Stemple DL, Harvey SA (2014) New insights into the maternal to zygotic
    transition. Development 141(20):3834–3841. doi:10.1242/dev.102368
    Lasko P (2013) The DEAD-box helicase Vasa: evidence for a multiplicity of functions in RNA
    processes and developmental biology. Biochim Biophys Acta 1829(8):810–816. doi:10.1016/j.
    Bbagrm.2013.04.005
    Lau NC, Ohsumi T, Borowsky M, Kingston RE, Blower MD (2009) Systematic and single cell
    analysis of Xenopus Piwi-interacting RNAs and Xiwi. EMBO J 28(19):2945–2958.
    doi:10.1038/emboj.2009.237
    Lawson K, Hage W (1994) Clonal analysis of the origin of primordial germ cells in the mouse.
    Ciba Found Symp 182:68–91
    Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL
    (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo.
    Genes Dev 13(4):424–436
    Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ (2013)
    Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic
    transition. Nature 503(7476):360–364. doi:10.1038/nature12632
    Leitch HG, Blair K, Mansfield W, Ayetey H, Humphreys P, Nichols J, Surani MA, Smith A (2010)
    Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripo-
    tent ground state. Development 137(14):2279–2287. doi:10.1242/dev.050427, dev.050427
    Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T, Grabole N, Mansfield W, Nashun B,
    Knezovich JG, Smith A, Surani MA, Hajkova P (2013) Naive pluripotency is associated with
    global DNA hypomethylation. Nat Struct Mol Biol 20(3):311–316. doi:10.1038/nsmb.2510


T. Aguero et al.
Free download pdf