Vertebrate Development Maternal to Zygotic Control (Advances in Experimental Medicine and Biology)

(nextflipdebug2) #1

436


Morichika K, Sugimoto M, Yasuda K, Kinoshita T (2014) Possible regulation of Oct60 transcrip-
tion by a positive feedback loop in Xenopus oocytes. Zygote 22(2):266–274. doi:10.1017/
S0967199412000536
Mosquera L, Forristall C, Zhou Y, King ML (1993) A mRNA localized to the vegetal cortex of
Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. Development
117(1):377–386
Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis
in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol
4(3):189–202
Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492.
doi:10.1016/j.stem.2009.05.015
Nieuwkoop PD (1947) Experimental investigations on the origin and determination of the germ
cells and on the development of the lateral plates and germ ridges in the urodeles. Arch Neer
Zool 8:1–205
Nieuwkoop PD (1969) The formation of the mesoderm in urodelean embryos: I. Induction by the
endoderm. Wilhelm Roux Arch 162:341–373
Nijjar S, Woodland HR (2013a) Localisation of RNAs into the germ plasm of vitellogenic Xenopus
oocytes. PLoS One 8(4):e61847. doi:10.1371/journal.pone.0061847
Nijjar S, Woodland HR (2013b) Protein interactions in Xenopus germ plasm RNP particles. PLoS
One 8(11):e80077. doi:10.1371/journal.pone.0080077
Nojima H, Rothhamel S, Shimizu T, Kim CH, Yonemura S, Marlow FL, Hibi M (2010) Syntabulin,
a motor protein linker, controls dorsal determination. Development 137(6):923–933.
doi:10.1242/dev.046425
Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle
for the specification of the germ cell lineage in mice. Cell 137(3):571–584. doi:10.1016/j.
cell.2009.03.014, S0092-8674(09)00274-8
Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig
M, Tarakhovsky A, Saitou M, Surani MA (2005) Blimp1 is a critical determinant of the germ cell
lineage in mice. Nature 436(7048):207–213. doi:10.1038/nature03813, nature03813
Olsen LC, Aasland R, Fjose A (1997) A vasa-like gene in zebrafish identifies putative primordial
germ cells. Mech Dev 66(1–2):95–105
Ota R, Kotani T, Yamashita M (2011) Biochemical characterization of Pumilio1 and Pumilio2 in
Xenopus oocytes. J Biol Chem 286(4):2853–2863. doi:10.1074/jbc.M110.155523
Padmanabhan K, Richter JD (2006) Regulated Pumilio-2 binding controls RINGO/Spy mRNA
translation and CPEB activation. Genes Dev 20(2):199–209. doi:10.1101/gad.1383106
Pelegri F, Knaut H, Maischein HM, Schulte-Merker S, Nusslein-Volhard C (1999) A mutation in
the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization.
Curr Biol 9(24):1431–1440
Perrett RM, Turnpenny L, Eckert JJ, O’Shea M, Sonne SB, Cameron IT, Wilson DI, Rajpert-De
Meyts E, Hanley NA (2008) The early human germ cell lineage does not express SOX2 during
in vivo development or upon in vitro culture. Biol Reprod 78(5):852–858. doi:10.1095/
biolreprod.107.066175
Petkov SG, Marks H, Klein T, Garcia RS, Gao Y, Stunnenberg H, Hyttel P (2011) In vitro culture
and characterization of putative porcine embryonic germ cells derived from domestic breeds
and Yucatan mini pig embryos at Days 20–24 of gestation. Stem Cell Res 6(3):226–237.
doi:10.1016/j.scr.2011.01.003, S1873-5061(11)00004-3
Petkov SG, Reh WA, Anderson GB (2009) Methylation changes in porcine primordial germ cells.
Mol Reprod Dev 76(1):22–30. doi:10.1002/mrd.20926
Ramasamy S, Wang H, Quach HN, Sampath K (2006) Zebrafish Staufen1 and Staufen2 are
required for the survival and migration of primordial germ cells. Dev Biol 292(2):393–406.
doi:10.1016/j.ydbio.2006.01.014
Raz E (2003) Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet
4(9):690–700. doi:10.1038/nrg1154


T. Aguero et al.
Free download pdf