487
Whitworth KM, Agca C, Kim JG, Patel RV, Springer GK, Bivens NJ, Forrester LJ, Mathialagan N,
Green JA, Prather RS (2005) Transcriptional profiling of pig embryogenesis by using a 15-K
member unigene set specific for pig reproductive tissues and embryos. Biol Reprod 72(6):
1437–1451
Wiekowski M, Miranda M, DePamphilis ML (1993) Requirements for promoter activity in mouse
oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev Biol
159(1):366–378
Wolffe AP (1989) Transcriptional activation of Xenopus class III genes in chromatin isolated from
sperm and somatic nuclei. Nucleic Acids Res 17(2):767–780
Wolffe AP, Brown DD (1987) Differential 5S RNA gene expression in vitro. Cell 51(5):733–740
Woodland HR, Gurdon JB (1969) RNA synthesis in an amphibian nuclear-transplant hybrid. Dev
Biol 20(2):89–104
Wormington WM, Brown DD (1983) Onset of 5S RNA gene regulation during Xenopus embryo-
genesis. Dev Biol 99(1):248–257
Wroble BN, Finkielstein CV, Sible JC (2007) Wee1 kinase alters cyclin E/Cdk2 and promotes
apoptosis during the early embryonic development of Xenopus laevis. BMC Dev Biol 7:119
Wu M, Gerhart JC (1980) Partial purification and characterization of the maturation-promoting
factor from eggs of Xenopus laevis. Dev Biol 79(2):465–477
Xanthos JB, Kofron M, Wylie C, Heasman J (2001) Maternal VegT is the initiator of a molecular
network specifying endoderm in Xenopus laevis. Development 128(2):167–180
Xu C, Fan ZP, Muller P, Fogley R, DiBiase A, Trompouki E, Unternaehrer J, Xiong F, Torregroza
I, Evans T, Megason SG, Daley GQ, Schier AF, Young RA, Zon LI (2012) Nanog-like regulates
endoderm formation through the Mxtx2-Nodal pathway. Dev Cell 22(3):625–638
Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu JY,
Horvath S, Fan G (2013) Genetic programs in human and mouse early embryos revealed by
single-cell RNA sequencing. Nature 500(7464):593–597
Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two Xenopus
species: evolutionary constraints and developmental flexibility. Dev Cell 20(4):483–496
Yang J, Tan C, Darken RS, Wilson PA, Klein PS (2002) Beta-catenin/Tcf-regulated transcription
prior to the midblastula transition. Development 129(24):5743–5752
Yang Q, Ferrell JE Jr (2013) The Cdk1-APC/C cell cycle oscillator circuit functions as a time-
delayed, ultrasensitive switch. Nat Cell Biol 15(5):519–525
Yasuda GK, Baker J, Schubiger G (1991) Temporal regulation of gene expression in the blasto-
derm Drosophila embryo. Genes Dev 5(10):1800–1812
Yasuda GK, Schubiger G (1992) Temporal regulation in the early embryo: is MBT too good to be
true? Trends Genet 8(4):124–127
Zamir E, Kam Z, Yarden A (1997) Transcription-dependent induction of G1 phase during the
zebrafish midblastula transition. Mol Cell Biol 17(2):529–536
Zeng F, Baldwin DA, Schultz RM (2004) Transcript profiling during preimplantation mouse devel-
opment. Dev Biol 272(2):483–496
Zeng F, Schultz RM (2005) RNA transcript profiling during zygotic gene activation in the preim-
plantation mouse embryo. Dev Biol 283(1):40–57
Zhang M, Kothari P, Lampson MA (2015) Spindle assembly checkpoint acquisition at the mid-
blastula transition. PLoS One 10(3):e0119285
Zhang M, Kothari P, Mullins M, Lampson MA (2014) Regulation of zygotic genome activation and
DNA damage checkpoint acquisition at the mid-blastula transition. Cell Cycle 13(24):3828–3838
9 Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition