Novel Chemical Tools to Study Ion Channel Biology (Advances in Experimental Medicine and Biology)

(sharon) #1

96 K. Mruk and W. R. Kobertz


dent channel ligand, an acrylamide electrophile, and the photocleavable chromo-
phore, nitroindoline. Using live cell imaging, the authors showed they could label
exogenously expressed channels in HEK293 cells or native neurons from dissoci-
ated hippocampal cultures. This study demonstrates the utility of delivering small
probes to an ion channel subunit without perturbing channel function.
Bioreactive tethers have been widely successful in gathering structural informa-
tion about ion channels and now provide an approach to selectively label endoge-
nous subunits in native cells. To date, these approaches have been limited to probing
the extracellular surface of ion channel complexes. Membrane permeant bioreactive
tethers with bioorthogonal functional groups would provide access to the cytoplas-
mic regions of ion channels, enabling the investigation of water-soluble regulatory
subunits and cofactors. This migration to innovative chemistries will provide a new
arsenal of bioreactive tethers to poke, prod, and manipulate ion channel complexes
in cells and living organisms.


References

Andresen BM, Du Bois J (2009) De novo synthesis of modified saxitoxins for sodium ion channel
study. J Am Chem Soc 131(35):12524–12525. doi:10.1021/ja904179f [doi]
Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for
remote control of neuronal firing. Nat Neurosci 7(12):1381–1386. doi:nn1356 [pii] 10.1038/
nn1356
Banghart MR, Mourot A, Fortin DL, Yao JZ, Kramer RH, Trauner D (2009) Photochromic
blockers of voltage-gated potassium channels. Angew Chem Int Ed Engl 48(48):9097–9101.
doi:10.1002/anie.200904504
Bartels E, Wassermann NH, Erlanger BF (1971) Photochromic activators of the acetylcholine
receptor. Proc Natl Acad Sci U S A 68(8):1820–1823
Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH (2006) Ectopic expression of a
microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration.
Neuron 50(1):23–33. doi:S0896-6273(06)00176-0 [pii] 10.1016/j.neuron.2006.02.026
Blaustein RO, Cole PA, Williams C, Miller C (2000) Tethered blockers as molecular ‘tape
measures’ for a voltage-gated K+ channel. Nat Struct Biol 7(4):309–311. doi:10.1038/74076
Bosmans F (2013) New rule(r)s for FRET. Biophys J 105(12):2619–2620. doi:S0006-3495(13)01239-3
[pii] 10.1016/j.bpj.2013.11.011 [doi]
Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a
lipid- and mechano-sensitive K+ ion channel. Science 335(6067):436–441. doi:335/6067/436
[pii] 10.1126/science.1213808 [doi]
Brohawn SG, Campbell EB, MacKinnon R (2013) Domain-swapped chain connectivity and gated
membrane access in a Fab-mediated crystal of the human TRAAK K+ channel. Proc Natl Acad
Sci U S A 110(6):2129–2134. doi:1218950110 [pii] 10.1073/pnas.1218950110 [doi]
Brown RL, Gerber WV, Karpen JW (1993) Specific labeling and permanent activation of the
retinal rod cGMP-activated channel by the photoaffinity analog 8-p-azidophenacylthio-cGMP.
Proc Natl Acad Sci U S A 90(11):5369–5373
Caporale N, Kolstad KD, Lee T, Tochitsky I, Dalkara D, Trauner D, Kramer R, Dan Y, Isacoff EY,
Flannery JG (2011) LiGluR restores visual responses in rodent models of inherited blindness.
Mol Ther 19(7):1212–1219. doi:mt2011103 [pii] 10.1038/mt.2011.103
Carter-Dawson LD, LaVail MM, Sidman RL (1978) Differential effect of the rd mutation on rods
and cones in the mouse retina. Invest Ophthalmol Vis Sci 17(6):489–498

Free download pdf