Exercise for Cardiovascular Disease Prevention and Treatment From Molecular to Clinical, Part 1

(Elle) #1

206



  1. Wang WZ, Gao L, Wang HJ et al (2009) Tonic glutamatergic input in the rostral ventrolateral
    medulla is increased in rats with chronic heart failure. Hypertension 53(2):370–374

  2. Wiemer G, Itter G, Malinski T et  al (2001) Decreased nitric oxide availability in normo-
    tensive and hypertensive rats with failing hearts after myocardial infarction. Hypertension
    38(6):1367–1371

  3. Wisløff U, Støylen A, Loennechen JP et al (2007) Superior cardiovascular effect of aerobic
    interval training versus moderate continuous training in heart failure patients. Circulation
    115(24):3086–3094

  4. Wisløff U, Loennechen JP, Currie S et  al (2002) Aerobic exercise reduces cardiomyocyte
    hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial
    infarction. Cardiovasc Res 54(1):162–174

  5. Wyatt CN, Mustard KJ, Pearson SA et  al (2007) AMP-activated protein kinase mediates
    carotid body excitation by hypoxia. J Biol Chem 282(11):8092–8098

  6. Xia Z, Liu M, Wu Y et  al (2006) N-acetylcysteine attenuates TNF-alpha-induced human
    vascular endothelias cell apoptosis and restores eNOS expression. Eur J  Pharmacol
    550(1-3):134–142

  7. Yang YT, McElligott MA (1989) Multiple actions of beta-adrenergic agonists on skeletal
    muscle and adipose tissue. Biochem J 261(1):1–10

  8. Yanni J, Tellez JO, Maczewski M et al (2011) Changes in ion channel gene expression under-
    lying heart failure-induced sinoatrial node dysfunction. Circ Heart Fail 4(4):496–508

  9. Yoshida T, Galvez S, Tiwari S et al (2013) Angiotensin II inhibits satellite cell proliferation
    and prevents skeletal muscle regeneration. J Biol Chem 288(33):23823–23832

  10. Yu L, Romero DG, Gomez-Sanchez CE et al (2002) Steroidogenic enzyme gene expression.
    In the human brain. Mol Cell Endocrinol 190(1–2):9–17

  11. Zhang K, Li YF, Patel KP (2001) Blunted nitric oxide-mediated inhibition of renal
    nerve discharge within PVN of rats with heart failure. Am J  Physiol Heart Circ Physiol
    281(3):995–1004

  12. Zhang L, Du J, Hu Z et al (2009) IL-6 and serum amyloid a synergy mediates angiotensin
    II-induced muscle wasting. J Am Soc Nephrol 20(3):604–612

  13. Zhang Y, Popovic ZB, Bibevski S et  al (2009) Chronic vagus nerve stimulation improves
    autonomic control and attenuates systemic inflammation and heart failure progression in a
    canine high-rate pacing model. Circ Heart Fail 2(6):692–699

  14. Zhao L, Cheng G, Jin R et al (2016) Deletion of interleukin-6 attenuates pressure overload-
    induced left ventricular hypertrophy and dysfunction. Circ Res 118(12):1918–1929

  15. Zheng H, Li YF, Cornish KG et al (2005) Exercise training improves endogenous nitric oxide
    mechanisms within the paraventricular nucleus in rats with heart failure. Am J Physiol Heart
    Circ Physiol 288(5):2332–2341

  16. Zheng H, Sharma NM, Liu X et al (2012) Exercise training normalizes enhanced sympathetic
    activation from the paraventricular nucleus in chronic heart failure: role of angiotensin II. Am
    J Physiol Regul Integr Comp Physiol 303(4):387–394

  17. Zimmerman MC, Lazartigues E, Lang JA et  al (2002) Superoxide mediates the actions of
    angiotensin II in the central nervous system. Circ Res 91(11):1038–1045

  18. Zoll J, Monassier L, Garnier A et al (2006) ACE inhibition prevents myocardial infarction-
    induced skeletal muscle mitochondrial dysfunction. J Appl Physiol 101(2):385–391

  19. Zucker IH, Patel KP, Schultz HD et al (2004) Exercise training and sympathetic regulation in
    experimental heart failure. Exerc Sport Sci Rev 32(3):107–111

  20. Zucker IH, Xiao L, Haack KK (2014) The central renin-angiotensin system and sympathetic
    nerve activity in chronic heart failure. Clin Sci 126(10):695–706


M.H.A. Ichige et al.
Free download pdf