Strom CC, Aplin M, Ploug T et al (2005) Expression profiling reveals differences in met-
abolic gene expression between exercise-induced cardiac effects and maladaptive cardiac
hypertrophy. FEBS J 272:2684–2695
Zhang L, Ussher JR, Oka T et al (2011) Cardiac diacylglycerol accumulation in high fat-
fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovasc Res
89:148–156
Parra V, Eisner V, Chiong M et al (2008) Changes in mitochondrial dynamics during
ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res 77:387–397
Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of dia-
betic cardiomyopathy. J Am Coll Cardiol 47:693–700
Liu L, Shi X, Bharadwaj KG et al (2009) DGAT1 expression increases heart triglyceride
content but ameliorates lipotoxicity. J Biol Chem 284:36312–36323
Bilet L, van de Weijer T, Hesselink MK et al (2011) Exercise-induced modulation of cardiac
lipid content in healthy lean young men. Basic Res Cardiol 106:307–315
Schrauwen-Hinderling VB, Hesselink MK, Meex R et al (2010) Improved ejection fraction
after exercise training in obesity is accompanied by reduced cardiac lipid content. J Clin
Endocrinol Metab 95:1932–1938
Schrauwen-Hinderling VB, Meex RC, Hesselink MK et al (2011) Cardiac lipid content is
unresponsive to a physical activity training intervention in type 2 diabetic patients, despite
improved ejection fraction. Cardiovasc Diabetol 10:47
Hojan K, Kwiatkowska-Borowczyk E, Leporowska E et al (2017) Inflammation, cardiometa-
bolic markers and functional changes in a randomized controlled trial of a 12-month exercise
program for prostate cancer men. Pol Arch Med Wewn. doi:10.20452/pamw.3888
Mandrup CM, Egelund J, Nyberg M et al (2016) Effects of high-intensity training on cardio-
vascular risk factors in premenopausal and postmenopausal women. Am J Obstet Gynecol
216:384.e1. doi:10.1016/j.ajog.2016.12.017
Koves TR, Sparks LM, Kovalik JP et al (2013) PPARgamma coactivator-1alpha contrib-
utes to exercise-induced regulation of intramuscular lipid droplet programming in mice and
humans. J Lipid Res 54:522–534
Kuramoto K, Okamura T, Yamaguchi T et al (2012) Perilipin 5, a lipid droplet-binding pro-
tein, protects heart from oxidative burden by sequestering fatty acid from excessive oxida-
tion. J Biol Chem 287:23852–23863
Kuramoto K, Sakai F, Yoshinori N et al (2014) Deficiency of a lipid droplet protein, perili-
pin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced
heart malfunction. Mol Cell Biol 34:2721–2731
Buchanan J, Mazumder PK, Hu P et al (2005) Reduced cardiac efficiency and altered sub-
strate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two
mouse models of insulin resistance and obesity. Endocrinology 146:5341–5349
Bugger H, Abel ED (2010) Mitochondria in the diabetic heart. Cardiovasc Res 88:229–240
Sung MM, Hamza SM, Dyck JR (2015) Myocardial metabolism in diabetic cardiomyopathy:
potential therapeutic targets. Antioxid Redox Signal 22:1606–1630
Boudina S, Bugger H, Sena S et al (2009) Contribution of impaired myocardial insulin signal-
ing to mitochondrial dysfunction and oxidative stress in the heart. Circulation 119:1272–1283
Jiang ZY, Lin YW, Clemont A et al (1999) Characterization of selective resistance to insulin
signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Investig 104:447–457
Cusi K, Maezono K, Osman A et al (2000) Insulin resistance differentially affects the PI
3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Investig 105:311–320
De Nigris V, Pujadas G, La Sala L et al (2015) Short-term high glucose exposure impairs
insulin signaling in endothelial cells. Cardiovas Diabetol 14:114
Lew JKS, Pearson JT, Schwenke DO et al (2017) Exercise mediated protection of diabetic
heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol
16:10
Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res
15:11–18