Wu J, Xia S, Kalionis B et al (2014) The role of oxidative stress and inflammation in cardio-
vascular aging. Biomed Res Int 2014:615312
Lakatta E (1994) Aging effects on the vasculature in health: risk factors for cardiovascular
disease. Am J Geriatr Cardiol 3(6):11–17
Kajstura J, Cheng W, Sarangarajan R et al (1996) Necrotic and apoptotic myocyte cell death
in the aging heart of Fischer 344 rats. Am J Physiol 271(3 Pt 2):H1215–H1228
Higami Y, Shimokawa I (2000) Apoptosis in the aging process. Cell Tissue Res 301(1):125–132
Jennings JR, Kamarck T, Manuck S et al (1997) Aging or disease? Cardiovascular reactivity
in Finnish men over the middle years. Psychol Aging 12(2):225–238
Collins AR, Lyon CJ, Xia X et al (2009) Age-accelerated atherosclerosis correlates with fail-
ure to upregulate antioxidant genes. Circ Res 104(6):e42–e54
Dai DF, Rabinovitch PS (2009) Cardiac aging in mice and humans: the role of mitochondrial
oxidative stress. Trends Cardiovasc Med 19(7):213–220
Domenighetti AA, Wang Q, Egger M et al (2005) Angiotensin II-mediated phenotypic cardio-
myocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension
46(2):426–432
Okumura S, Vatner DE, Kurotani R et al (2007) Disruption of type 5 adenylyl cyclase
enhances desensitization of cyclic adenosine monophosphate signal and increases Akt signal
with chronic catecholamine stress. Circulation 116(16):1776–1783
Yan L, Vatner DE, O’Connor JP et al (2007) Type 5 adenylyl cyclase disruption increases
longevity and protects against stress. Cell 130(2):247–258
Treuting PM, Linford NJ, Knoblaugh SE et al (2008) Reduction of age-associated pathology
in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci
63(8):813–822
Gounder SS, Kannan S, Devadoss D et al (2012) Impaired transcriptional activity of Nrf2 in
age-related myocardial oxidative stress is reversible by moderate exercise training. PLoS One
7(9):e45697
Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes
divide after myocardial infarction. N Engl J Med 344(23):1750–1757
Quaini F, Urbanek K, Beltrami AP et al (2002) Chimerism of the transplanted heart. N Engl
J Med 346(1):5–15
Chimenti C, Kajstura J, Torella D et al (2003) Senescence and death of primitive cells and
myocytes lead to premature cardiac aging and heart failure. Circ Res 93(7):604–613
Epel ES, Blackburn EH, Lin J et al (2004) Accelerated telomere shortening in response to life
stress. Proc Natl Acad Sci U S A 101(49):17312–17315
Wolkowitz OM, Mellon SH, Epel ES et al (2011) Leukocyte telomere length in major depres-
sion: correlations with chronicity, inflammation and oxidative stress–preliminary findings.
PLoS One 6(3):e17837
Murillo OB, Ramírez EJ, Hernández VWI et al (2016) Impact of oxidative stress in premature
aging and iron overload in hemodialysis patients. Oxidative Med Cell Longev 2016:1578235
Leri A, Franco S, Zacheo A et al (2003) Ablation of telomerase and telomere loss leads to car-
diac dilatation and heart failure associated with p 53 upregulation. EMBO J 22(1):131–139
Mourkioti F, Kustan J, Kraft P et al (2013) Role of telomere dysfunction in cardiac failure in
Duchenne muscular dystrophy. Nat Cell Biol 15(8):895–904
Olivetti G, Melissari M, Capasso JM et al (1991) Cardiomyopathy of the aging human heart.
Myocyte loss and reactive cellular hypertrophy. Circ Res 68(6):1560–1568
Chien KR, Karsenty G (2005) Longevity and lineages: toward the integrative biology of
degenerative diseases in heart, muscle, and bone. Cell 120(4):533–544
Zhu H, Tannous P, Johnstone JL et al (2007) Cardiac autophagy is a maladaptive response to
hemodynamic stress. J Clin Invest 117(7):1782–1793
Ramos GC, van den Berg A, Nunes-Silva V et al (2017) Myocardial aging as a T-cell–medi-
ated phenomenon. Proc Natl Acad Sci U S A 114(12):E2420–E2429