Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor
NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven
gene transcription. J Biol Chem 285(29):22576–22591
Pickering AM, Linder RA, Zhang H et al (2012) Nrf2-dependent induction of proteasome
and Pa28alphabeta regulator are required for adaptation to oxidative stress. J Biol Chem
287(13):10021–10031
Cullinan SB, Gordan JD, Jin J et al (2004) The Keap1-BTB protein is an adaptor that bridges
Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell
Biol 24(19):8477–8486
Furukawa M, Xiong Y (2005) BTB protein Keap1 targets antioxidant transcription factor
Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25(1):162–171
Kobayashi A, Kang MI, Okawa H et al (2004) Oxidative stress sensor Keap1 functions as an
adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol
24(16):7130–7139
Tong KI, Katoh Y, Kusunoki H et al (2006) Keap1 recruits Neh2 through binding to ETGE
and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol
26(8):2887–2900
Rada P, Rojo AI, Chowdhry S et al (2011) SCF/{beta}-TrCP promotes glycogen synthase
kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent man-
ner. Mol Cell Biol 31(6):1121–1133
Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/
Nrf2 signaling pathway. Int J Biochem Cell Biol 38(3):317–332
Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental
stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116
Kwak MK, Itoh K, Yamamoto M et al (2002) Enhanced expression of the transcription factor
Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences
in the nrf2 promoter. Mol Cell Biol 22(9):2883–2892
Narasimhan M, Hong J, Atieno N et al (2014) Nrf2 deficiency promotes apoptosis and impairs
PAX7/MyoD expression in aging skeletal muscle cells. Free Radic Biol Med 71:402–414
Narasimhan M, Mahimainathan L, Rathinam ML et al (2011) Overexpression of Nrf2
protects cerebral cortical neurons from ethanol-induced apoptotic death. Mol Pharmacol
80(6):988–999
Mukaigasa K, Nguyen LTP, Li L et al (2012) Genetic evidence of an evolutionarily conserved
role for Nrf2 in the protection against oxidative stress. Mol Cell Biol 32(21):4455–4461
Kunapuli S, Rosanio S, Schwarz ER (2006) “How do cardiomyocytes die?” apoptosis and
autophagic cell death in cardiac myocytes. J Card Fail 12(5):381–391
Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death and
pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets
autophagy. Cardiovasc Drugs Ther 20(6):445–462
Terman A, Gustafsson B, Brunk UT (2007) Autophagy, organelles and ageing. J Pathol
211(2):134–143
Warabi E, Takabe W, Minami T et al (2007) Shear stress stabilizes NF-E2-related factor 2 and
induces antioxidant genes in endothelial cells: role of reactive oxygen/nitrogen species. Free
Radic Biol Med 42(2):260–269
Tan Y, Ichikawa T, Li J et al (2011) Diabetic downregulation of Nrf2 activity via ERK con-
tributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo.
Diabetes 60(2):625–633
Suh JH, Shenvi SV, Dixon BM et al (2004) Decline in transcriptional activity of Nrf2 causes
age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad
Sci U S A 101(10):3381–3386
Lewis KN, Mele J, Hornsby PJ et al (2012) Stress resistance in the naked mole-rat: the bare
essentials - a mini-review. Gerontology 58(5):453–462