Bostrom P, Mann N, Wu J et al (2010) C/EBPbeta controls exercise-induced cardiac growth
and protects against pathological cardiac remodeling. Cell 143:1072–1083
McMullen JR, Shioi T, Huang WY et al (2004) The insulin-like growth factor 1 receptor
induces physiological heart growth via the phosphoinositide 3-kinase (p110alpha) pathway.
J Biol Chem 279:4782–4793
Luo J, McMullen JR, Sobkiw CL et al (2005) Class IA phosphoinositide 3-kinase regulates
heart size and physiological cardiac hypertrophy. Mol Cell Biol 25:9491–9502
Kim J, Wende AR, Sena S et al (2008) Insulin-like growth factor I receptor signaling is required
for exercise-induced cardiac hypertrophy. Mol Endocrinol 22:2531–2543
Catalucci D, Latronico MV, Condorelli G (2008) MicroRNAs control gene expression: impor-
tance for cardiac development and pathophysiology. Ann N Y Acad Sci 1123:20–29
Care A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat
Med 13:613–618
Soci UP, Fernandes T, Hashimoto NY et al (2011) MicroRNAs 29 are involved in the
improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol
Genomics 43:665–673
van Rooij E, Sutherland LB, Thatcher JE et al (2008) Dysregulation of microRNAs after
myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A
105:13027–13032
Gilad S, Lithwick-Yanai G, Barshack I et al (2012) Classification of the four main types of
lung cancer using a microRNA-based diagnostic assay. J Mol Diagn 14:510–517
Shi J, Bei Y, Kong X et al (2017) miR-17-3p contributes to exercise-induced cardiac growth
and protects against myocardial ischemia-reperfusion injury. Theranostics 7:664–676