Exercise for Cardiovascular Disease Prevention and Treatment From Molecular to Clinical, Part 1

(Elle) #1

268



  1. Bostrom P, Mann N, Wu J et al (2010) C/EBPbeta controls exercise-induced cardiac growth
    and protects against pathological cardiac remodeling. Cell 143:1072–1083

  2. McMullen JR, Shioi T, Huang WY et  al (2004) The insulin-like growth factor 1 receptor
    induces physiological heart growth via the phosphoinositide 3-kinase (p110alpha) pathway.
    J Biol Chem 279:4782–4793

  3. Luo J, McMullen JR, Sobkiw CL et al (2005) Class IA phosphoinositide 3-kinase regulates
    heart size and physiological cardiac hypertrophy. Mol Cell Biol 25:9491–9502

  4. Kim J, Wende AR, Sena S et al (2008) Insulin-like growth factor I receptor signaling is required
    for exercise-induced cardiac hypertrophy. Mol Endocrinol 22:2531–2543

  5. Catalucci D, Latronico MV, Condorelli G (2008) MicroRNAs control gene expression: impor-
    tance for cardiac development and pathophysiology. Ann N Y Acad Sci 1123:20–29

  6. Care A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat
    Med 13:613–618

  7. Soci UP, Fernandes T, Hashimoto NY et  al (2011) MicroRNAs 29 are involved in the
    improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol
    Genomics 43:665–673

  8. van Rooij E, Sutherland LB, Thatcher JE et al (2008) Dysregulation of microRNAs after
    myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A
    105:13027–13032

  9. Gilad S, Lithwick-Yanai G, Barshack I et  al (2012) Classification of the four main types of
    lung cancer using a microRNA-based diagnostic assay. J Mol Diagn 14:510–517

  10. Shi J, Bei Y, Kong X et al (2017) miR-17-3p contributes to exercise-induced cardiac growth
    and protects against myocardial ischemia-reperfusion injury. Theranostics 7:664–676


J. Kyselovič and J.J. Leddy
Free download pdf