89
- Wisloff U, Loennechen JP, Currie S et al (2002) Aerobic exercise reduces cardiomyocyte
hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial
infarction. Cardiovasc Res 54(1):162–174 - Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205
- Vangheluwe P, Sipido KR, Raeymaekers L et al (2006) New perspectives on the role of
SERCA2’s Ca2+ affinity in cardiac function. Biochim Biophys Acta 1763(11):1216–1228 - Kemi OJ, Ellingsen O, Smith GL et al (2008) Exercise-induced changes in calcium handling
in left ventricular cardiomyocytes. Front Biosci 13:356–368 - Tate CA, Helgason T, Hyek MF et al (1996) SERCA2a and mitochondrial cytochrome oxidase
expression are increased in hearts of exercise-trained old rats. Am J Phys 271(1 Pt 2):H68–H72 - Laughlin MH, Hale CC, Novela L et al (1991) Biochemical characterization of exercise-
trained porcine myocardium. J Appl Physiol 71(1):229–235 - Tibbits GF, Kashihara H, O’Reilly K (1989) Na+−Ca2+ exchange in cardiac sarcolemma:
modulation of Ca2+ affinity by exercise. Am J Phys 256(3 Pt 1):C638–C643 - Shao CH, Wehrens XH, Wyatt TA et al (2009) Exercise training during diabetes attenuates
cardiac ryanodine receptor dysregulation. J Appl Physiol 106(4):1280–1292 - Carneiro-Junior MA, Quintao-Junior JF, Drummond LR et al (2014) Effect of exercise training
on Ca2+ release units of left ventricular myocytes of spontaneously hypertensive rats. Braz
J Med Biol Res 47(11):960–965 - Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of ca(2+)
release units and couplons in skeletal and cardiac muscles. Biophys J 77(3):1528–1539 - Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88(4):1491–1545
- Calore C, Zorzi A, Corrado D (2015) Clinical meaning of isolated increase of QRS voltages in
hypertrophic cardiomyopathy versus athlete’s heart. J Electrocardiol 48(3):373–379 - Sharma S, Merghani A, Mont L (2015) Exercise and the heart: the good, the bad, and the ugly.
Eur Heart J 36(23):1445–1453 - Badeer HS (1975) Resting bradycardia of exercise training: a concept based on currently avail-
able data. Recent Adv Stud Cardiac Struct Metab 10:553–560 - Moore RL (1998) Cellular adaptations of the heart muscle to exercise training. Ann Med
30(Suppl 1):46–53 - Bahrainy S, Levy WC, Busey JM et al (2016) Exercise training bradycardia is largely explained
by reduced intrinsic heart rate. Int J Cardiol 222:213–216 - D’Souza A, Bucchi A, Johnsen AB et al (2014) Exercise training reduces resting heart rate via
downregulation of the funny channel HCN4. Nat Commun 5:3775 - DiFrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res
106(3):434–446 - Bois P, Bescond J, Renaudon B et al (1996) Mode of action of bradycardic agent, S 16257, on
ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 118(4):1051–1057 - Zingman LV, Zhu Z, Sierra A et al (2011) Exercise-induced expression of cardiac ATP-
sensitive potassium channels promotes action potential shortening and energy conservation.
J Mol Cell Cardiol 51(1):72–81 - Yang KC, Foeger NC, Marionneau C et al (2010) Homeostatic regulation of electrical excit-
ability in physiological cardiac hypertrophy. J Physiol 588(Pt 24):5015–5032 - Brown DA, Chicco AJ, Jew KN et al (2005) Cardioprotection afforded by chronic exercise is
mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the
rat. J Physiol 569(Pt 3):913–924 - Jew KN, Olsson MC, Mokelke EA et al (2001) Endurance training alters outward K+ current
characteristics in rat cardiocytes. J Appl Physiol 90(4):1327–1333 - Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305(5930):147–148
- Foster MN, Coetzee WA (2016) KATP channels in the cardiovascular system. Physiol Rev
96(1):177–252 - Zingman LV, Hodgson DM, Bast PH et al (2002) Kir6.2 is required for adaptation to stress.
Proc Natl Acad Sci U S A 99(20):13278–13283
5 Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes...