431599_Print.indd

(nextflipdebug5) #1

Bibliography



  1. Na K et al (2011) Directing zeolite structures into hierarchically nanoporous architectures.
    Science 333:328– 332

  2. Schaedler TA et al (2011) Ultralight metallic microlattices. Science 334:962– 965

  3. Place ES, George JH, Williams CK, Stevens MM (2009) Synthetic polymer scaffolds for
    tissue engineering. Chem Soc Rev 38:1139

  4. Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS (2011) Spatially
    controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels.
    Nat Mater 10:799

  5. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for
    dynamic tuning of physical and chemical properties. Science 324:59

  6. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for
    engineering complex tissues. Nat Nanotechnol 6:13

  7. Kraehenbuehl TP, Langer R, Ferreira L (2011) Three-dimensional biomaterials for the study
    of human pluripotent stem cells. Nat Meth 8:731

  8. Hutmacher DW (2010) Biomaterials offer cancer research the third dimension. Nat Mater
    9:90

  9. Huh D et al (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662

  10. Baker M (2011) Tissue models: A living system on a chip. Nature 471:661

  11. Schwille P (2011) Bottom-up synthetic biology: Engineering in a Tinkerer’s world. Science
    333:1252

  12. Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science
    333:1248

  13. Timko BP et al (2009) Electrical recording from hearts withflexible nanowire device arrays.
    Nano Lett 9:914

  14. Viventi J et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping
    cardiac electrophysiology. Transl Med 2:24ra22

  15. Kim DH et al (2011) Materials for multifunctional balloon catheters with capabilities in
    cardiac electrophysiological mapping and ablation therapy. Nat Mater 10:316

  16. Viventi J et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array
    for mapping brain activity in vivo. Nat Neurosci 14:1599

  17. Kim DH et al (2011) Epidermal electronics. Science 333:838

  18. Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM (2010) Three-dimensional,
    flexible nanoscalefield-effect transistors as localized bioprobes. Science 329:831

  19. Qing Q et al (2010) Nanowire transistor arrays for mapping neural circuits in acute brain
    slices. Proc Natl Acad Sci USA 107:1882

  20. Cohen-Karni T, Timko BP, Weiss LE, Lieber CM (2009) Flexible electrical recording from
    cells using nanowire transistor arrays. Proc Natl Acad Sci USA 106:7309

  21. Timko BP, Cohen-Karni T, Qing Q, Tian B, Lieber CM (2010) Design and implementation of
    functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire
    device arrays. IEEE Trans Nanotechnol 9:269

  22. Prohaska OJ, Olcaytug F, Pfundner P, Dragaun H (1986) Thin-film multiple electrode
    probes: Possibilities and limitations. IEEE T Bio-Med Eng BME 33:223

  23. Nicolelis, MAL (ed) Methods for neural ensemble recordings, 2nd edn. CRC Press, Boca
    Raton (FL)

  24. McKnight TE et al (2006) Resident neuroelectrochemical interfacing using carbon nanofibre
    arrays. J Phys Chem B 110:15317

  25. Yu Z et al (2007) Vertically aligned carbon nanofibre arrays record electrophysiological
    signals from hippocampal slices. Nano Lett 7:2188

  26. Aviss KJ, Gough JE, Downes S (2010) Aligned electrospun polymerfibres for skeletal muscle
    regeneration. Euro Cells Mater 19:193


62 4 Three-Dimensional Macroporous Nanoelectronics...

Free download pdf