Systems Biology (Methods in Molecular Biology)

(Tina Sui) #1

  1. Guzzi R (2012) Introduction to inverse meth-
    ods with applications to geophysics and remote
    sensing (in Italian). Earth sciences and geogra-
    phy series. Springer, New York.http://www.
    springer.com/it/book/9788847024946

  2. Ambrosio L, Dal Maso G (1990) A general
    chain rule for distributional derivatives. Proc
    Am Math Soc 108:691–702. doi:10.1090/
    S0002-9939-1990-0969514-3

  3. Li C, Donizelli M, Rodriguez N et al (2010)
    BioModels database: an enhanced, curated and
    annotated resource for published quantitative
    kinetic models. BMC Syst Biol 4:92.
    doi:10.1186/1752-0509-4-92

  4. Hucka M, Finney A, Sauro HM, Bolouri H,
    Doyle JC et al (2003) The systems biology
    markup language (SBML): a medium for rep-
    resentation and exchange of biochemical net-
    work models. Bioinformatics 19:524–531.
    doi:10.1093/bioinformatics/btg015

  5. Orr HA (2006) The distribution of fitness
    effects among beneficial mutations in Fisher’s
    geometric model of adaptation. J Theor Biol
    238:279–285. doi:10.1016/j.
    jtbi.2005.05.001

  6. Waterfall JJ (2006) Universality in multiparam-
    eter fitting: sloppy models. Ph.D. thesis, Cor-
    nell University, Ithaca, New York

  7. White A, Tolman M, Thames HD, Withers
    HR, Mason KA, Transtrum MK (2016) The
    limitations of model-based experimental
    design and parameter estimation in sloppy sys-
    tems. PLoS Comput Biol 12:e1005227.
    doi:10.1371/journal.pcbi.1005227

  8. Tyson JJ (1991) Modeling the cell division
    cycle: cdc2 and cyclin interactions. Proc Natl
    Acad Sci USA 88:7328–7332

  9. Bellu G, Saccomani MP, Audoly S, D’Angio`L
    (2007) DAISY: a new software tool to test
    global identifiability of biological and physio-
    logical systems. Comput Methods Prog


Biomed 88:52–61. doi:10.1016/j.
cmpb.2007.07.002


  1. Song C, Phenix H, Abedi V, Scott M, Ingalls
    BP, Kaern M, Perkins TJ (2010) Estimating the
    stochastic bifurcation structure of cellular net-
    works. PLoS Comput Biol 6. doi:10.1371/
    journal.pcbi.1000699

  2. Lu J, Engl HW, Schuster P (2006) Inverse
    bifurcation analysis: application to simple gene
    systems. Algorithms Mol Biol 1:11.
    doi:10.1186/1748-7188-1-11

  3. Villaverde AF, Banga JR (2014) Reverse engi-
    neering and identification in systems biology:
    strategies, perspectives and challenges. J R Soc
    Interface 11. doi:10.1098/rsif.2013.0505

  4. Paci P, Colombo T, Fiscon G, Gurtner A,
    Pavesi G, Farina L (2017) SWIM: a computa-
    tional tool to unveiling crucial nodes in com-
    plex biological networks. Sci Rep 7:44797.
    doi:10.1038/srep44797

  5. Villaverde A, Henriques D, Smallbone K,
    Bongard S, Schmid J, Cicin-Sain D,
    Crombach A, Saez-Rodriguez J, Mauch K,
    Balsa-Canto E, Mendes P, Jaeger J, Banga JR
    (2015) BioPreDyn-bench: a suite of bench-
    mark problems for dynamic modelling in sys-
    tems biology. BMC Syst Biol 9:8.
    doi:10.1186/s12918-015-0144-4

  6. Press WH, Teukolsky SA, Vetterling WT, Flan-
    nery BP (2007) Numerical recipes: the art of
    scientific computing, 3rd edn. Cambridge Uni-
    versity Press, Cambridge

  7. Haselgrove CB (1961) The solution of nonlin-
    ear equations and of differential equations with
    two-point boundary conditions. Comput J
    4:255–259

  8. Gillespie DT (2007) Stochastic simulation of
    chemical kinetics. Annu Rev Phys Chem
    58:35–55. doi:10.1146/annurev.
    physchem.58.032806.104637


94 Rodolfo Guzzi et al.

Free download pdf