Precision Medicine, CRISPR, and Genome Engineering Moving from Association to Biology and Therapeutics

(Dana P.) #1
21


  1. Rouet P, Smih F, Jasin M.  Introduction of double-strand breaks into the genome of mouse
    cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14:8096–106.

  2. Yanik M, et al. In vivo genome editing as a potential treatment strategy for inherited retinal
    dystrophies. Prog Retin Eye Res. doi:10.1016/j.preteyeres.2016.09.001.

  3. Chandrasegaran S, Smith J.  Chimeric restriction enzymes: what is next? Biol Chem.
    1999;380:841–8.

  4. Kim YG, Shi Y, Berg JM, Chandrasegaran S. Site-specific cleavage of DNA-RNA hybrids by
    zinc finger/FokI cleavage domain fusions. Gene. 1997;203:43–9.

  5. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I
    cleavage domain. Proc Natl Acad Sci U S A. 1996;93:1156–60.

  6. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome
    engineering. Trends Biotechnol. 2013;31:397–405.

  7. Urnov FD, et  al. Highly efficient endogenous human gene correction using designed zinc-
    finger nucleases. Nature. 2005;435:646–51.

  8. Schierling B, et al. A novel zinc-finger nuclease platform with a sequence-specific cleavage
    module. Nucleic Acids Res. 2012;40:2623–38.

  9. Boch J, et  al. Breaking the code of DNA binding specificity of TAL-type III effectors.
    Science. 2009;326:1509–12.

  10. Scholze H, Boch J.  TAL effectors are remote controls for gene activation. Curr Opin
    Microbiol. 2011;14:47–53.

  11. Christian M, et  al. Targeting DNA double-strand breaks with TAL effector nucleases.
    Genetics. 2010;186:757–61.

  12. Miller JC, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol.
    2011;29:143–8.

  13. Holkers M, et  al. Differential integrity of TALE nuclease genes following adenoviral and
    lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41:e63.

  14. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap
    gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and iden-
    tification of the gene product. J Bacteriol. 1987;169:5429–33.

  15. Nakata A, Amemura M, Makino K. Unusual nucleotide arrangement with repeated sequences
    in the Escherichia coli K-12 chromosome. J Bacteriol. 1989;171:3553–6.

  16. Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regu-
    larly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol.
    2000;36:244–6.

  17. Makarova KS, et  al. Evolution and classification of the CRISPR–Cas systems. Nat Rev
    Microbiol. 2011;9:467–77.

  18. Jansen R, van Embden JDA, Gaastra W, Schouls LM.  Identification of a novel family of
    sequence repeats among prokaryotes. OMIC. 2002;6:23–33.

  19. Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and
    archaea. Mol Cell. 2010;37:7–19.

  20. Jinek M, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial
    immunity. Science. 2012;337:816–21.

  21. Zhang, Y. et al. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleav-
    age in human cells. Sci Rep. 2014; 4.

  22. Jinek M, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational acti-
    vation. Science. 2014;343:1247997.

  23. Makarova KS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev
    Microbiol. 2015;13:722–36.

  24. Mali P, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

  25. Cong L, et  al. Multiplex genome engineering using CRISPR/Cas systems. Science.
    2013;339:819–23.

  26. Osborn MJ, et al. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther.
    2015;26:114–26.


1 Viral Vectors, Engineered Cells and the CRISPR Revolution

Free download pdf