67
- Harrison MM, Jenkins BV, O’Connor-Giles KM, Wildonger J. A CRISPR view of develop-
ment. Genes Dev. 2014;28(17):1859–72. - Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered
CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5. - Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler
P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell.
2015;163(3):759–71. - Doench JG. CRISPR/Cas9 gene editing special issue. FEBS J. 2016;283(17):3160–1.
- Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9
nucleases. Nat Rev Genet. 2016;17(5):300–12. - Mohr SE, Hu Y, Ewen-Campen B, Housden BE, Viswanatha R, Perrimon N. CRISPR guide
RNA design for research applications. FEBS J. 2016;283(17):3232–8. - Graham DB, Root DE. Resources for the design of CRISPR gene editing experiments.
Genome Biol. 2015;16:260. - D’Agostino Y, D’Aniello S. Molecular basis, applications and challenges of CRISPR/Cas9: a
continuously evolving tool for genome editing. Brief Funct Genomics. 2017. - Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specific-
ity. Mol Cell. 2016;63(3):355–70. - Bolukbasi MF, Gupta A, Wolfe SA. Creating and evaluating accurate CRISPR-Cas9 scalpels
for genomic surgery. Nat Methods. 2016;13(1):41–50. - Bard J. A systems biology view of evolutionary genetics: network-driven processes incor-
porate much more variation than evolutionary genetics can handle. This variation is hard to
formalise but allows fast change. BioEssays. 2010;32(7):559–63. - Bard JB. The next evolutionary synthesis: from Lamarck and Darwin to genomic variation
and systems biology. Cell Commun Signal. 2011;9(1):30. - Wagner A. Distributed robustness versus redundancy as causes of mutational robustness.
BioEssays. 2005;27(2):176–88. - Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al. Genome-scale
CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–7. - Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K. Genome-wide recessive genetic
screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol.
2014;32(3):267–73. - Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-
Cas9 system. Science. 2014;343(6166):80–4. - Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen
in a mouse model of tumor growth and metastasis. Cell. 2015;160(6):1246–60. - Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, et al. A genome-
wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell.
2015;162(3):675–86. - Malina A, Mills JR, Cencic R, Yan Y, Fraser J, Schippers LM, et al. Repurposing CRISPR/
Cas9 for in situ functional assays. Genes Dev. 2013;27(23):2602–14. - Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al. High-throughput screening of a CRISPR/
Cas9 library for functional genomics in human cells. Nature. 2014;509(7501):487–91. - Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation
of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.
Cell. 2013;153(4):910–8. - Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering
using CRISPR/Cas systems. Science. 2013;339(6121):819–23. - Port F, Chen HM, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and
somatic genome engineering in Drosophila. Proc Natl Acad Sci. 2014;111(29):E2967–76. - Yin L, Maddison LA, Li M, Kara N, LaFave MC, Varshney GK, et al. Multiplex conditional
mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics. 2015;200(2):431–41.
3 From Reductionism to Holism: Toward a More Complete View of Development...