70
- Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al. Lineage-
specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia
evolution. Nat Genet. 2016;48(10):1193–203. - de Groote ML, Verschure PJ, Rots MG. Epigenetic editing: targeted rewriting of epi-
genetic marks to modulate expression of selected target genes. Nucleic Acids Res.
2012;40(21):10596–613. - Jurkowski TP, Ravichandran M, Stepper P. Synthetic epigenetics-towards intelligent control
of epigenetic states and cell identity. Clin Epigenetics. 2015;7:18. - Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated
modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51. - Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference
(CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013;8(11):2180–96. - Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing
CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell.
2013;152(5):1173–83. - Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, et al. Highly
specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory ele-
ments. Nat Methods. 2015;12(12):1143–9. - Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activa-
tion of endogenous human genes. Nat Methods. 2013;10(10):977–9. - Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. RNA-
guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods.
2013;10(10):973–6. - Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. Multiplexed activation of
endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res.
2013;23(10):1163–71. - Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. CAS9 transcrip-
tional activators for target specificity screening and paired nickases for cooperative genome
engineering. Nat Biotechnol. 2013;31(9):833–8. - Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for
signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46. - Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, et al. Highly efficient Cas9-
mediated transcriptional programming. Nat Methods. 2015;12(4):326–8. - Farzadfard F, Perli SD, Lu TK. Tunable and multifunctional eukaryotic transcription factors
based on CRISPR/Cas. ACS Synth Biol. 2013;2(10):604–13. - Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, et al.
Comparison of Cas9 activators in multiple species. Nat Methods. 2016;13(7):563–7. - Black JB, Adler AF, Wang H-G, D’Ippolito AM, Hutchinson HA, Reddy TE, et al. Targeted
epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators
directly converts fibroblasts to neuronal cells. Cell Stem Cell. 2016;19(3):406–14. - Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, et al. Functional
annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods.
2015;12(5):401–3. - Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al.
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promot-
ers and enhancers. Nat Biotechnol. 2015;33(5):510–7. - Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, et al. Repurposing the CRISPR-Cas9
system for targeted DNA methylation. Nucleic Acids Res. 2016;44(12):5615–28. - Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, Dokter-Fokkens J, Ruiters MHJ,
et al. Writing of H3K4Me3 overcomes epigeneticsilencing in a sustained but context-
dependentmanner. Nat Commun. 2016;7:1–11. - Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. CRISPR-dCas9 medi-
ated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget.
2016;7(29):46545–56.
R.K. Delker and R.S. Mann