88
- Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice
carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell.
2013;154(6):1370–9. - Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, et al. Heritable gene targeting in the mouse and
rat using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):681–3. - Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple
gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol. 2013;31(8):684–6. - Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. Generation of mutant mice
by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep.
2013;3:3355. - Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, et al. Correction of a genetic disease in mouse
via use of CRISPR-Cas9. Cell Stem Cell. 2013;13(6):659–62. - Chari R, Mali P, Moosburner M, Church GM. Unraveling CRISPR-Cas9 genome engineering
parameters via a library-on-library approach. Nat Methods. 2015;12(9):823–6. - Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized
sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat
Biotechnol. 2016;34(2):184–91. - Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al. Rational design
of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol.
2014;32(12):1262–7. - Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, et al.
CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat
Methods. 2015;12(10):982–8. - Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, et al. Enhanced specificity and efficiency of
the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep.
2014;9(3):1151–62. - Wong N, Liu W, Wang X. WU-CRISPR: characteristics of functional guide RNAs for the
CRISPR/Cas9 system. Genome Biol. 2015;16:218. - Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-
RNA- guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY).
2012;337(6096):816–21. - Valerius MT, Patterson LT, Witte DP, Potter SS. Microarray analysis of novel cell lines represent-
ing two stages of metanephric mesenchyme differentiation. Mech Dev. 2002;112(1–2):219–32. - Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential
off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30(10):1473–5. - Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. Nat Methods.
2014;11(2):122–3. - Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting
specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827–32. - MacPherson CR, Scherf A. Flexible guide-RNA design for CRISPR applications using
Protospacer Workbench. Nat Biotechnol. 2015;33(8):805–6. - Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: a CRISPR/Cas9 and
TALEN web tool for genome editing. Nucleic Acids Res. 2014;42(Web Server issue):W401–7. - Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: software for designing CRISPR/Cas guide
RNA with reduced off-target sites. Bioinformatics. 2015;31(7):1120–3. - O’Brien A, Bailey TL. GT-scan: identifying unique genomic targets. Bioinformatics.
2014;30(18):2673–5. - Pliatsika V, Rigoutsos I. “Off-Spotter”: very fast and exhaustive enumeration of genomic loo-
kalikes for designing CRISPR/Cas guide RNAs. Biol Direct. 2015;10:4. - Prykhozhij SV, Rajan V, Gaston D, Berman JN. CRISPR multitargeter: a web tool to find com-
mon and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One.
2015;10(3):e0119372.
C.L. Yuan and Y.-C. Hu