Quorum Sensing

(sharon) #1

  1. Fuqua C, Winans SC (1996) Conserved cis-
    acting promoter elements are required for
    density-dependent transcription ofAgrobacter-
    ium tumefaciensconjugal transfer genes. J Bac-
    teriol 178:435–440

  2. Zhu J, Chai Y, Zhong Z, Li S, Winans SC
    (2003) Agrobacterium bioassay strain for ultra-
    sensitive detection of N-acylhomoserine
    lactone-type quorum-sensing molecules:
    detection of autoinducers in Mesorhizobium
    huakuii. Appl Environ Microbiol
    69:6949–6953

  3. Glansdorp FG, Thomas GL, Lee JK, Dutton
    JM, Salmond GPC, Welch M et al (2004) Syn-
    thesis and stability of small molecule probes for
    Pseudomonas aeruginosaquorum sensing mod-
    ulation. Org Biomol Chem 2:3329–3336

  4. Wood DW, Pierson LS (1996) ThephzIgene
    ofPseudomonas aureofaciens30-84 is responsi-
    ble for the production of a diffusible signal
    required for phenazine antibiotic production.
    Gene 168:49–53

  5. McLean RJC, Pierson LS, Fuqua C (2004) A
    simple screening protocol for the identification
    of quorum signal antagonists. J Microbiol
    Methods 58:351–360

  6. Fuqua WC, Winans SC (1994) AluxR-luxI
    type regulatory system activatesAgrobacterium
    Ti plasmid conjugal transfer in the presence of a
    plant tumor metabolite. J Bacteriol
    176:2796–2806

  7. Zhu J, Beaber JW, More ́MI, Fuqua C, Eber-
    hard A, Winans SC (1998) Analogs of the
    autoinducer 3-oxooctanoyl-homoserine lac-
    tone strongly inhibit activity of the TraR pro-
    tein ofAgrobacterium tumefaciens. J Bacteriol
    180:5398–5405

  8. Luo ZQ, Clemente TE, Farrand SK (2001)
    Construction of a derivative ofAgrobacterium
    tumefaciensC58 that does not mutate to tetra-
    cycline resistance. Mol Plant Microbe Interact
    14:98–103

  9. Zan J, Cicirelli EM, Mohamed NM, Sibhatu
    H, Kroll S, Choi O et al (2012) A complex
    LuxR-LuxI type quorum sensing network in a
    roseobacterial marine sponge symbiont acti-
    vates flagellar motility and inhibits biofilm for-
    mation. Mol Microbiol 85:916–933

  10. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE
    Jr, Rinehart KL et al (1997) Detecting and
    characterizingN-acyl-homoserine lactone sig-
    nal molecules by thin layer chromatography.
    Proc Natl Acad Sci U S A 94:6036–6041

  11. Stauff DL, Bassler BL (2011) Quorum sensing
    inChromobacterium violaceum: DNA recogni-
    tion and gene regulation by the CviR receptor.
    J Bacteriol 193:3871–3878
    40. Blosser RS, Gray KM (2000) Extraction of
    violacein from Chromobacterium violaceum
    provides a new quantitative bioassay forN-
    acyl homoserine lactone autoinducers. J Micro-
    biol Methods 40:47–55
    41. Stoodley P, Sauer K, Davies DG, Costerton JW
    (2002) Biofilms as complex differentiated com-
    munities. Annu Rev Microbiol 56:187–209
    42. Donlan RM, Costerton JW (2002) Biofilms:
    survival mechanisms of clinically relevant
    microorganisms. Clin Microbiol Rev
    15:167–193
    43. Petrova OE, Sauer K (2016) Escaping the bio-
    film in more than one way: desorption, detach-
    ment or dispersion. Curr Opin Microbiol
    30:67–78
    44. Yang L, Givskov M (2015) Chemical biology
    strategies for biofilm control. Microbiol Spectr
    3:MB-0019-2015
    45. Kim SK, Lee JH (2016) Biofilm dispersion in
    Pseudomonas aeruginosa. J Microbiol
    54:71–85
    46. Davies DG, Marques CNH (2009) A fatty acid
    messenger is responsible for inducing disper-
    sion in microbial biofilms. J Bacteriol
    191:1393–1403
    47. Hengge R (2009) Principles of c-di-GMP sig-
    nalling in bacteria. Nat Rev Microbiol
    7:263–273
    48. Li Y, Petrova OE, Su S, Lau GW, Panmanee W,
    Na R et al (2014) BdlA, DipA and induced
    dispersion contribute to acute virulence and
    chronic persistence ofPseudomonas aeruginosa.
    PLoS Pathog 10:e1004168
    49. Barraud N, Schleheck D, Klebensberger J,
    Webb JS, Hassett DJ, Rice SA et al (2009)
    Nitric oxide signaling inPseudomonas aerugi-
    nosa biofilms mediates phosphodiesterase
    activity, decreased cyclic diguanosine-5^0 -mono-
    phosphate levels and enhanced dispersal. J Bac-
    teriol 191:7333–7342
    50. Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo
    J, Tay M et al (2009) The biofilm life cycle and
    virulence of Pseudomonas aeruginosa are
    dependent on a filamentous prophage. ISME
    J 3:271–282
    51. Fuqua C, Burbea M, Winans SC (1995) Activ-
    ity of theAgrobacteriumTi plasmid conjugal
    transfer regulator TraR is inhibited by the
    product of the traM gene. J Bacteriol
    177:1367–1373
    52. Tempe J, Petit A, Holsters M, Von Montagu
    M, Schell J (1977) Thermosensitive step asso-
    ciated with transfer of the Ti plasmid during
    conjugation: possible relation to transforma-
    tion in crown gall. Proc Natl Acad Sci U S A
    74:2848–2849


Bioassays of Quorum and Biofilm Dispersion Signals 23
Free download pdf