Cook, J.L., Bewley, G.C. and Schaffer, J.B. (1988) ‘Drosophila sn-glycerol-3-phosphate
dehydrogenase isozymes are generated by alternate pathways of RNA processing resulting in
different carboxyl-terminal amino acid sequences’, Journal of Biological Chemistry, 263:
10858–64.
Dobzhansky, Th., Ayala, F.J., Stebbins, G.L. and Valentine, J.W. (1977) Evolution, San Francisco:
Freeman.
Enroth, C., Eger, B.T., Okamoto, K., Nishino, T., Nishino, T. and Pai, E.F. (2000) ‘Cystal
structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based
mechanism of conversion’, Proceedings of the National Academy of Sciences, USA, 97:10723– 8.
Fitch, W.M. and Ayala, F.J. (1994) ‘The superoxide molecular clock revisited’, Proceedings of the
National Academy of Sciences, USA, 91:6802–7.
Fitch, W.M. and Margoliash, E. (1967) ‘Construction of phylogenetic trees’, Science, 155:279–84.
Fridovich, I. (1986) ‘Superoxide dismutases’, Advances in Enzymology, 58:61–97.
Gaut, B.S., Muse, S.V., Clark, W.F. and Clegg, M.T. (1992) ‘Relative rates of nucleotide substitution
at the rbcL locus of monocotyledonous plants’, Journal of Molecular Evolution, 35:292–303.
Gillespie, J.H. (1991) The Causes of Molecular Evolution, New York: Oxford University Press.
Grimaldi, D.A. (1990) ‘A phylogenetic revised classification of genera in the Drosophilidae
(Diptera)’, Bulletin of the American Museum of Natural History, 197:1–139.
Hille, R. and Nishino, T. (1995) ‘Xanthine oxidase and xanthine dehydrogenase. FASEB Journal, 9:
995–1003.
Jones, D.T, Taylor, W.R. and Thornton, J.M. (1992) ‘The rapid generation of mutation data
matrices from protein sequences’, Computer Applications in the Biosciences, 8:275–82.
Kimura, M. (1968) ‘Evolutionary rate at the molecular level’, Nature, 217:624–6.
—— (1980) ‘A simple method for estimating evolutionary rate of base substitution through
comparative studies of nucleotide sequences’, Journal of Molecular Evolution, 16:111–20.
—— (1983) The Neutral Theory of Molecular Evolution, Cambridge: Cambridge University Press.
Kimura, M. and Ohta, T. (1972) ‘Population genetics, molecular biometry, and evolution’,
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probabilities, Vol. 5,
pp. 43–68.
Kohne, D.E. (1970) ‘Evolution of higher-organism DNA’, Quarterly Review of Biophysics, 33:
327–75.
Kwiatowski, J. and Ayala, F. (1999) ‘Phylogeny of Drosophila and related genera: Conflict between
molecular and anatomical analyses’, Molecular Phylogenetics and Evolution, 13:319–28.
Kwiatowski, J., Krawczyk, M., Jaworski, M., Skarecky, D. and Ayala, F.J. (1997) ‘Erratic
evolution of glycerol-3-phosphate dehydrogenase in Drosophila Chymomyza, and Ceratitis’,
Journal of Molecular Evolution., 44:9–22.
Langley, C.H. and Fitch, W.M. (1974) ‘An examination of the constancy of the rate of molecular
evolution’, Journal of Molecular Evolution, 3:161–77.
Lee, Y.M., Misra, H.P. and Ayala, F.J. (1981) ‘Superoxide dismutase in Drosophila melanogaster:
Biochemical and structural characteristics of allozyme variants’, Proceedings of the National
Academy of Sciences, USA, 78:7052–5.
Li, W.-H. (1997) Molecular Evolution, Sunderland, MA: Sinauer.
Li, W.-H. and Graur, D. (1997) Fundamentals of Molecular Evolution, Sunderland, MA: Sinauer.
Li, W.-H., Ellsworth, D.L., Kruchkal, J.K., Chang, B.H.-J. and Hewett-Emmett, D. (1996)
‘Rates of nucleotide substitution in primates and rodents and the generation time effect
hypothesis’, Molecular Phylogenetics and Evolution, 5 :182–7.
Margoliash, E. (1963) ‘Primary structure and evolution of cytochrome c’, Proceedings of the National
Academy of Sciences, USA, 50:672–9.
24 FRANCISCO RODRÍGUEZ-TRELLES ET AL.