Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between
bacteria and fungi in the soil. J Chem Ecol 38(6):665– 703
Elkahoui S, Djebali N, Yaich N, Azaiez S, Hammami M, Essid R, Limam F (2015) Antifungal
activity of volatile compounds-producingPseudomonasP2 strain againstRhizoctonia solani.
World J Microbiol Biotechnol 31(1):175– 185
Ezra D, Jasper J, Rogers T, Knighton B, Grimsrud E, Strobel G (2004) Proton transfer
reaction-mass spectrometry as a technique to measure volatile emissions ofMuscodor albus.
Plant Sci 166(6):1471– 1477
Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC–MS SPME profiling of rhizobacterial
volatiles reveals prospective inducers of growth promotion and induced systemic resistance in
plants. Phytochemistry 67(20):2262– 2268
Garbeva P, Voesenek K, Van Elsas JD (2004) Quantitative detection and diversity of the
pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36
(9):1453– 1463
Garbeva P, Hordijk C, Gerards S, de Boer W (2014) Volatile-mediated interactions between
phylogenetically different soil bacteria. Front Microbiol 5:289
Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound
production by organisms in the genusAscocoryneand a re-evaluation of myco-diesel
production by NRRL 50072. Microbiol 156(12):3814– 3829
Grigoriev IV, Cullen D, Hibbett D, Goodwin SB, Jeffries TW, Kuske C, Magnuson J, Spatafora J
(2011) Fueling the future with fungal genomics. Mycology 2(3):192– 209
Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schulz S, Weisskopf L (2013)
Production of bioactive volatiles by differentBurkholderia ambifariastrains. J Chem Ecol 39
(7):892– 906
Gutierrez-Luna FM, Lopez-Bucio J, Altamirano-Hernandez J, Valencia-Cantero E, de la Cruz HR,
Macias-Rodriguez L (2010) Plant growth-promoting rhizobacteria modulate root-system
architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis
51(1):75– 83
Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in
agricultural crops. Can J Microbiol 43:895– 914
Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC,
Anderson AJ Kim YC (2006) GacS-dependent production of 2R,3R-butanediol by
Pseudomonas chlororaphisO6 is a major determinant for eliciting systemic resistance against
Erwinia carotovorabut not againstPseudomonas syringaepv. tabaci in tobacco. Mol
Plant-Microbe Interact 19(8):924– 930
Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their
proposed role in plant growth. Trends Microbiol 16(10):463– 471
Hardoim P, Nissinen R, van Elsas JD (2012) Ecology of bacterial endophytes in sustainable
agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer,
Berlin, Heidelberg, pp 97– 126
Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and
productivity. New Phytol 189(3):647– 649
Hawksworth DL (2001) The magnitude offungal diversity: the 1.5 million species estimate revisited.
Mycol Res 105(12):1422– 1432
Heil M, Walters DR (2009) Ecological consequences of plant defence signalling. Adv Bot Res
51:667– 716
Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY (2012) Dimethyl disulfide is an
induced systemic resistance elicitor produced byBacillus cereusC1L. Pest Manag Sci 68
(9):1306– 1310
Huang H, Wu Z, Tian C, Liang Y, You C, Chen L (2015) Identification and characterization of the
endophytic bacterium Bacillus atrophaeus XW2, antagonistic towards Colletotrichum
gloeosporioides. Ann Microbiol 65(3):1361– 1371
256 D. Chandra et al.