110
Javaherian A, Kriegstein A (2009) A stem cell niche for intermediate progenitor cells of the embry-
onic cortex. Cereb Cortex 19(Suppl 1):i70–i77. https://doi.org/10.1093/cercor/bhp029
Jeon HM, Jin X, Lee JS, Oh SY, Sohn YW, Park HJ et al (2008) Inhibitor of differentiation 4 drives
brain tumor-initiating cell genesis through cyclin E and notch signaling. Genes Dev. https://doi.
org/10.1101/gad.1668708
Jhaveri DJ, Mackay EW, Hamlin AS, Marathe SV, Nandam LS, Vaidya VA et al (2010)
Norepinephrine directly activates adult hippocampal precursors via 3-adrenergic receptors.
J Neurosci 30:2795–2806. https://doi.org/10.1523/JNEUROSCI.3780-09.2010
Jiang X, Nardelli J (2015) Cellular and molecular introduction to brain development. Neurobiol
Dis. https://doi.org/10.1016/j.nbd.2015.07.007
Jin X, Yin J, Kim SH, Sohn YW, Beck S, Lim YC et al (2011) EGFR-AKT-Smad signaling pro-
motes formation of glioma stem-like cells and tumor angiogenesis by ID3-driven cytokine
induction. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-11-1330
Johansson PA, Cappello S, Götz M (2010) Stem cells niches during development-lessons from the
cerebral cortex. Curr Opin Neurobiol. https://doi.org/10.1016/j.conb.2010.04.003
Joppé SE, Hamilton LK, Cochard LM, Levros L-C, Aumont A, Barnabé-Heider F et al (2015)
Bone morphogenetic protein dominantly suppresses epidermal growth factor-induced pro-
liferative expansion of adult forebrain neural precursors. Front Neurosci 9:407. https://doi.
org/10.3389/fnins.2015.00407
Joy AM, Beaudry CE, Tran NL, Ponce F a, Holz DR, Demuth T et al (2003) Migrating glioma
cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J Cell Sci
116:4409–4417. https://doi.org/10.1242/jcs.00712
Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR et al (2014)
Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.
Science 344:630–634. https://doi.org/10.1126/science.1251141
Kazanis I (2012) Can adult neural stem cells create new brains? Plasticity in the adult mamma-
lian neurogenic niches: realities and expectations in the era of regenerative biology. Neurosci
18:15–27
Kazanis I (2013) Neurogenesis in the adult mammalian brain: how much do we need, how much
do we have? Curr Top Behav Neurosci 15:3–29. https://doi.org/10.1007/7854_2012_227
Kazanis I, ffrench-Constant C (2012) The number of stem cells in the subependymal zone of the
adult rodent brain is correlated with the number of ependymal cells and not with the volume of
the niche. Stem Cells Dev 21:1090–1096. https://doi.org/10.1089/scd.2011.0130
Kazanis I, Belhadi A, Faissner A, ffrench-Constant C (2007) The adult mouse subependymal zone
regenerates efficiently in the absence of tenascin-C. J Neurosci 27:13991–13996
Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mughal MR et al (2010) Quiescence and
activation of stem and precursor cell populations in the subependymal zone of the mamma-
lian brain are associated with distinct cellular and extracellular matrix signals. J Neurosci
30:9771–9781
Kazanis I, Evans KA, Andreopoulou E, Dimitriou C, Koutsakis C, Karadottir RT et al (2017)
Subependymal zone-derived oligodendroblasts respond to focal demyelination but fail to gen-
erate myelin in young and aged mice. Stem Cell Reports 8:685–700. https://doi.org/10.1016/j.
stemcr.2017.01.007
Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E et al (2007) Novel
extracellular matrix structures in the neural stem cell niche capture the neurogenic factor
fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25:2146–2157. https://doi.
org/10.1634/stemcells.2007-0082
Kerever A, Yamada T, Suzuki Y, Mercier F, Arikawa-Hirasawa E (2015) Fractone aging in the sub-
ventricular zone of the lateral ventricle. J Chem Neuroanat 66:52–60. https://doi.org/10.1016/j.
jchemneu.2015.06.001.
Keung AJ, Asuri P, Kumar S, Schaffer DV, Hall S (2012) Soft microenvironments promote the
early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr
Biol (Camb) 21:1049–1058. https://doi.org/10.1039/c2ib20083j
E. Andreopoulou et al.