232
Accumulated information from these studies will be very important for regenerative
medicine interests. Moreover, novel technologies such as iPSC-LB warrant further
consideration as models of the multicellular interactions observed in the develop-
mental processes, and even in mature bodies. Organ bud technologies that recapitu-
late these multicellular interactions will facilitate three- dimensional structure
organization without the use of synthetic scaffolds and early blood perfusion after
transplantation. Thus, organ bud technology is a next-generation regenerative medi-
cine approach that may offer a future cultured tissue alternative to organ
transplantation.
References
Assawachananont J, Mandai M, Okamoto S et al (2014) Transplantation of embryonic and induced
pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell
Reports 2:662–674. doi:10.1016/j.stemcr.2014.03.011
Bhatia SN, Underhill GH, Zaret KS, Fox IJ (2014) STATE OF THE ART REVIEW Cell and tissue
engineering for liver disease
Burke Z, Oliver G (2002) Prox1 is an early specific marker for the developing liver and pancreas
in the mammalian foregut endoderm. Mech Dev 118:147–155. doi:10.1016/
S0925-4773(02)00240-X
Camp JG, Badsha F, Florio M, et al (2015) Human cerebral organoids recapitulate gene expression
programs of fetal neocortex development. 1–6. doi: 10.1073/pnas.1520760112
Chi X, Michos O, Shakya R et al (2009) Ret-Dependent Cell Rearrangements in the Wolffian Duct
Epithelium initiate ureteric bud morphogenesis. Dev Cell 17:199–209. doi:10.1016/j.
devcel.2009.07.013
Collin de l’Hortet A, Takeishi K, Guzman-Lepe J et al (2016) Liver-regenerative transplantation:
regrow and reset. Am J Transplant 16:1688–1696. doi:10.1111/ajt.13678
Daley GQ (2012) The promise and perils of stem cell therapeutics. Cell Stem Cell 10:740–749
Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-
dimensional culture. Nature 472:51–56. doi:10.1038/nature09941
Franklin V, Khoo PL, Bildsoe H et al (2008) Regionalisation of the endoderm progenitors and
morphogenesis of the gut portals of the mouse embryo. Mech Dev 125:587–600. doi:10.1016/j.
mod.2008.04.001
Gordillo M, Evans T, Gouon-Evans V (2015) Orchestrating liver development. Development
142:2094–2108. doi:10.1242/dev.114215
Hannoun Z, Steichen C, Dianat N et al (2016) The potential of induced pluripotent stem cell
derived hepatocytes. J Hepatol. doi:10.1016/j.jhep.2016.02.025
Harrelson Z, Kaestner KH, Evans SM (2012) Foxa2 mediates critical functions of prechordal plate
in patterning and morphogenesis and is cell autonomously required for early ventral endoderm
morphogenesis. Biol Open 1:173–181. doi:10.1242/bio.2011040
Hirayama M, Ogawa M, Oshima M et al (2013) Functional lacrimal gland regeneration by trans-
plantation of a bioengineered organ germ. Nat Commun 4:2497. doi:10.1038/ncomms3497
Ichikawa T, Nakazato K, Keller PJ et al (2014) Live imaging and quantitative analysis of gastrula-
tion in mouse embryos using light-sheet microscopy and 3D tracking tools. Nat Protoc 9:575–
- doi:10.1038/nprot.2014.035
Ikonomou L, Kotton DN (2015) Derivation of endodermal progenitors from pluripotent stem cells.
J Cell Physiol 230:246–258. doi:10.1002/jcp.24771
K. Sekine et al.