Organ Regeneration Based on Developmental Biology

(Ron) #1

234


Oshima M, Inoue K, Nakajima K et al (2014) Functional tooth restoration by next-generation bio-
hybrid implant as a bio-hybrid artificial organ replacement therapy. Sci Rep 4:1–10.
doi:10.1038/srep06044
Ozone C, Suga H, Eiraku M et al (2016) Functional anterior pituitary generated in self-organizing
culture of human embryonic stem cells. Nat Commun 7:10351. doi:10.1038/ncomms10351
Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D cul-
ture. Cell Stem Cell 12:520–530. doi:10.1016/j.stem.2013.04.009
Sato T, Vries RG, Snippert HJ et  al (2009) Single Lgr5 stem cells build crypt-villus structures
in vitro without a mesenchymal niche. Nature 459:262–265. doi:10.1038/nature07935
Sato T, van Es JH, Snippert HJ et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in
intestinal crypts. Nature 469:415–418. doi:10.1038/nature09637
Sekine K, Takebe T, Suzuki Y et al (2012) Highly efficient generation of definitive endoderm lin-
eage from human induced pluripotent stem cells. Transplant Proc 44:1127–1129. doi:10.1016/j.
transproceed.2012.03.001
Si-Tayeb K, Lemaigre FP, Duncan SA (2010a) Organogenesis and development of the liver. Dev
Cell 18:175–189. doi:10.1016/j.devcel.2010.01.011
Si-Tayeb K, Noto FK, Nagaoka M et al (2010b) Highly efficient generation of human hepatocyte-
like cells from induced pluripotent stem cells. Hepatology 51:297–305. doi:10.1002/hep.23354
Sosa-Pineda B, Wigle JT, Oliver G (2000) Hepatocyte migration during liver development requires
Prox1. Nat Genet 25:254–255. doi:10.1038/76996
Spence JR, Mayhew CN, Rankin SA et  al (2010) Directed differentiation of human pluripotent
stem cells into intestinal tissue in vitro. Nature 470:105–109. doi:10.1038/nature09691
Spence JR, Mayhew CN, Rankin SA et  al (2011) Directed differentiation of human pluripotent
stem cells into intestinal tissue in vitro. Nature 470:105–109. doi:10.1038/nature09691
Sudo R (2014) Multiscale tissue engineering for liver reconstruction. Organogenesis 10:1–9.
doi:10.4161/org.27968
Suga H, Kadoshima T, Minaguchi M et al (2011) Self-formation of functional adenohypophysis in
three-dimensional culture. Nature 480:57–62. doi:10.1038/nature10637
Suzuki K, Tanaka M, Watanabe N et al (2008) p75 Neurotrophin receptor is a marker for precur-
sors of stellate cells and portal fibroblasts in mouse fetal liver. Gastroenterology. doi:10.1053/j.
gastro.2008.03.075
Takagi R, Ishimaru J, Sugawara A et al (2016) Bioengineering a 3D integumentary organ system
from iPS cells using an in  vivo transplantation model. Sci Adv 2:e1500887–e1500887.
doi:10.1126/sciadv.1500887
Takasato M, Er PX, Becroft M et al (2014) Directing human embryonic stem cell differentiation
towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16:118–126.
doi:10.1038/ncb2894
Takasato M, Er PX, Chiu HS et al (2015) Kidney organoids from human iPS cells contain multiple
lineages and model human nephrogenesis. Nature 526:564–568. doi:10.1038/nature15695
Takebe T, Koike N, Sekine K et  al (2012) Generation of functional human vascular network.
Transplant Proc 44:1130–1133. doi:10.1016/j.transproceed.2012.03.039
Takebe T, Sekine K, Enomura M et  al (2013) Vascularized and functional human liver from an
iPSC-derived organ bud transplant. Nature 499:481–484. doi:10.1038/nature12271
Takebe T, Zhang R-R, Koike H et al (2014) Generation of a vascularized and functional human
liver from an iPSC-derived organ bud transplant. Nat Protoc 9:396–409. doi:10.1038/
nprot.2014.020
Takebe T, Enomura M, Yoshizawa E et  al (2015) Vascularized and complex organ buds from
diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16:556–565.
doi:10.1016/j.stem.2015.03.004
Tanimizu N, Miyajima A, Mostov KE (2007) Liver progenitor cells develop CholangiocytetType
epithelial polarity in three-dimensional culture. Mol Biol Cell 18:986–994. doi:10.1091/mbc.
E06


K. Sekine et al.
Free download pdf