To Design a Small Pneumatic Actuator Driven Parallel
Link Mechanism forShoulder Prostheses for Daily Living Use 113
2 2
2
2
2
111 1 3 3
' cos sin sin cos
22 2 2 213
cos sin sin '
22PB P P BPPrr r r rrrhl
2 2
2
3
2
111 1 3 3
' cos sin sin cos
22 2 2 213 cos sin sin '
22PB P P BPPrr r r rrrhl
(9)Equation (9) is a simultaneous equation with three unknown variables, , , h 1 ’. In the case
that the lengths l 1 ’, l 2 ’, l 3 ’ are given, it is possible to calculate , , h 1 ’ by using the Newton
method (Ku, 1999; Merlet, 1993; Press et al., 1992). Similarly, for the Segment 2 (i.e. in OP 1 -
xP 1 yP 1 zP 1 ), the following equation can be derived. In the case that the length l 4 ’, l 5 ’, l 6 ’, are
given, it is possible to calculate ,, h 2 ’.
2
P P 22
P P B2
P B2
62
P P 22
P P B2
P B
5 22 2 2 2
4'hsinrsincosrl rcosr' rcosrsinsinrsincosr 'hsinrl rcosr' rcosrsinsinrl' P B P P 2 'hsincosrsinsinrrcosr
23
2123
23
21
21
2123
2123
23
21
21
21(10)The position of the Rod end PRE’ in OP 2 -xP 2 yP 2 zP 2 , i.e. P^2 PRE’ can be defined as:
T
RE R2PP 00 l , ,'
(11)Let x, y, z be the coordinate of B^1 PRE’, then end position of the Rod, x, y, z in OB 1 - XYZ can be
described as:
coscossinsincos 'h'hlcossincossinsincos sincoscossinsincoscossincossinsincos sinzyxzyx '''R 2 11P1B
2P1P
RE2P
22P
1T 1P00
00
0(^000)
OOPRR
(12)
http://www.ebook3000.com