- (a) : Let x 1 = a sin Zt and x 2 = a sin(Zt + G) be
two S.H.M.
a ata at
33
= sinaωωnd− =+sin( δ)
sinaωωtt=+^1 ndsin( δ)=−
3
1
3
Eliminating t,c^1 os sin
3
1 1
9
1
3
δδ+− =−
9 cos^2 G + 2cos G – 7 = 0
cosG = –1 or
7
8
i.e., G = 180° or cos−^1 ^7
9
Now v 1 = a Z cos Zt and v 2 = a Z cos^ (Zt + G)
If we put G = 180°
We nd that v 1 and v 2 are of opposite signs.
Hence G = 180° is not applicable.
∴=δ cos−^1 ^7
9
- (c) : ∆φ π ππ
λ
=⇒ 2 +=θπ
2
nd^2 sin 2 n
2 2 1
2
π
λ
dnsinθπ=−
sinθ λλ
λ
=− =×
×
2 1 =
22
1
223
1
12
n
d
⇒=y
()100
1
λ^212
144 100
100
12
25
3
yy^22 =≈()λ ; λλ=
- (a) : r=°cos3 0 =^23
2
T 2 cos 30° + T 1 cos30° + mg cos 30° = mv
r
2
T 2 sin 30° + mg sin 30° = T 1 sin30°
Just slack T 0 = 0° T 1 = mg
2 mg cos 30° × L cos30° = mv^2
vL^22
4
=^3 × 10
v^2
2
=^3 ×× 10 24. = 36 v = 6 m s–1
- (b) : Acceleration of electron = ae
? a
eE
e me
==
Force on electron
Mass of electron
Similarly, acceleration of proton, a
eE
p mp
=
Su=+tat
1
2
2
? Sa=+=+ (^01) eptS at
2
0 1
(^12)
2
2
and^2
? 1
2
1
(^12)
2
2
at at^2
ep=
or
t
t
a
a
eE
m
m
eE
m
m
e
pe
pp
e
2
1
^2
==×=?
t
t
m
m
p
e
2
1
12
=
/
- (b) : VAB = I 2 (4 + 6)
? VAB = 10 I 2
5 :
4 :
A B
I
I 1
I 2 6 :
Also VAB = I 1 (5)
? 5 I 1 = 10 I 2
or I 1 = 2 I 2 ...(i)
Let HI==R
Heatgenerated
second
2
?
H
H
I
I
4
5
2
2
1
2
4
5
=
×
×
HI
I
42
2
2
10 2
4
25
=
×
()×
or H 4 10 4 1
45
= × 2
×
= cals−.
- (a) : Since the electron moves undeected between
the plates of condenser, there should be equal and
opposite magnetic and electric forces upon it.
Electric force is to the le, due to positively charged
plate.
Magnetic force on electron should be towards right.
e magnetic eld should therefore be directed
perpendicular to plane of paper inwards, according
to Fleming’s le hand rule.
Magnetic force = Electrical force
evB = eE
or B
E
v
V
dv
==
1
B=
×
×
−
3
500
310
1
(^3610)
or B = 0.055 T
- (a) : e magnetic force on the charged particles
provides necessary centripetal force for circular
motion of the particles.
mv
r
qvB
2
= or r
mv
qB
=
r
p
qB
r
qB
==or
2 mK (∵ p (^2) = 2mK)
rrpd :: rα= ::
1
1
2
1
4
2
or rp : rd : rD = 1 : 2 : 1 or rD = rp < rd
- (d) : I = I 0 (1 – e–t/W) where I
V
R
L
(^0) R
==andτ
- – – – – –
E v e y x z