7.6 Three-dimensional modeling and simulations Ë 249When we replace휎sby a tensor resistivity휌sto take the anisotropy of the HTSC into
account in Eq. (7.73) and consider that
휌s(∇×T)=( 0
8휌ab 0 0
0 휌ab 0
0 0 훼휌ab) 1
9
( 0
(^00)
(^00)
(^00)
(^00)
(^00)
8
¤휕Tz
휕y
−
휕Ty
휕z¥x̂휕Tx
휕z−휕Tz
휕xŷ¤
휕Ty
휕x−
휕Tx
휕y¥ẑ) 1
(^11)
(^11)
(^11)
(^11)
(^11)
9
=휌ab ¤휕Tz
휕y
−
휕Ty
휕z¥x̂+휕Tx
휕z−휕Tz
휕xŷ+훼¤휕Ty
휕x−휕Tx
휕y¥ẑ¡.(7.74)The following equality for the first term in the left side of Eq. (7.73) holds,
∇×휌s(∇×T)=휌ab ̈훼휕^2 Ty
휕x휕y−훼휕
(^2) Tx
휕y^2
−휕
(^2) Tx
휕z^2
+휕
(^2) Tz
휕x휕z
©x̂
+휌ab ̈휕
(^2) Tz
휕y휕z
−
휕^2 Ty
휕z^2−훼
휕^2 Ty
휕x^2+훼휕
(^2) Tx
휕y휕x
©ŷ
+휌ab ̈휕
(^2) Tx
휕z휕x
−휕
(^2) Tz
휕x^2
−휕
(^2) Tz
휕y^2
+
휕^2 Ty
휕z휕y©ẑ. (7.75)According to the Coulomb gauge, we have∇(∇ ⋅T)=0, i.e.
¬
휕^2 Tx
휕x^2 +휕^2 Ty
휕y휕x+휕^2 Tz
휕z휕x
x̂+¬휕(^2) Tx
휕x휕t+
휕^2 Ty
휕y^2 +
휕^2 Tz
휕z휕y
ŷ
+¬
휕^2 Tx
휕x휕z+휕^2 Ty
휕y휕z+휕^2 Tz
휕z^2
ẑ= 0. (7.76)The following identities can be derived from Eq. (7.76),
휕^2 Tz
휕z휕x= −휕
(^2) Tx
휕x^2
−
휕^2 Ty
휕y휕x, 휕
(^2) Tz
휕z휕y
= −휕
(^2) Tx
휕x휕y
−
휕^2 Ty
휕y^2, 휕
(^2) Tx
휕x휕z
+
휕^2 Ty
휕y휕z= −휕
(^2) Tz
휕z^2