9780521861724htl 1..2

(Jacob Rumans) #1

H. Ju ̈ rgens and D. Saupe. New York: Springer
Verlag, pp. 921–953.
Feder, H. (1988).Fractals. New York: Plenum
Press.
Fesl, C. (2002). Niche-oriented species-
abundance models: different approaches of
their application to larval chironomid
(Diptera) assemblages in a large river.Journal
of Animal Ecology, 71 , 1085–1094.
Finlay, B. J. (2002). Global dispersal of free-living
microbial eukaryote species.Science, 296 ,
1061–1063.
Gisiger, T. (2001). Scale invariance in biology:
coincidence or footprint of a universal
mechanism?Biological Review, 76 , 161–209.
Halsey, T. C., Jensen, M. H., Kadanoff, L. P.,
Procaccia, I. & Shraiman, B. I. (1986). Fractal
measures and their singularities: the
characterization of strange sets.Physical
Review A, 33 , 1141–1151.
Harte, J., Kinzig, A. & Green, J. (1999). Self-sim-
ilarity in the distribution and abundance of
species.Science, 284 , 334–336.
Hentschel, H. & Procaccia, I. (1983). The infinite
number of generalized dimensions of fractal
and strange attractors.Physica D, 8 , 435–444.
Hubbell, S. P. (2001).A Unified Neutral Theory of
Biodiversity and Biogeography. Princeton, NJ:
Princeton University Press.
Jeffries, M. (1993). Invertebrate colonization of
artificial pond weeds of differing fractal
dimension.Oikos, 67 , 142–148.
Johnson, G. D., Tempelman, A. & Patil, G. P.
(1995). Fractal based methods in ecology: a
review for analysis at multiple spatial
scales.Coenosis, 10 , 123–131.
Keylock, C. J. (2005). Simpson diversity and the
Shannon-Wiener index as special cases of a
generalized entropy.Oikos, 101 , 205–207.
Kolmogorov, A. N. (1959). Entropy per unit time
as a metric invariant of automorphisms.
Mathemathical Review, 21 , 2035.
Kravchenko, A. N., Boast, C. W. & Bullock, D. G.
(1999). Multifractal analysis of soil spatial
variability.Agronomy Journal, 91 , 1033–1041.


Kropp, J., von Bloh, W., Block, A., Klenke, Th. &
Schellnhuber, H.-J. (1994). Characteristic
multifractal element distributions in recent
bioactive marine sediments. InFractals and
Dynamic Systems in Geosciences, ed. J. H. Kruhl.
Berlin: Springer, pp. 369–375.
Kunin, W. E. (1998). Extrapolating species
abundance across spatial scales.Science,
281 , 1513–1515.
Lennon, J. J., Kunin, W. E. & Hartley, S. (2002).
Fractal species distributions do not produce
power-law species-area relationships.Oikos,
97 , 378–386.
Mandelbrot, B. B. (1974). Intermittent turbu-
lence in self similar cascades: divergence of
high moments and dimension of the carrier.
Journal of Fluid Mechanics, 62 , 331–358.
Mandelbrot, B. B. (1989). Multifractal measures,
especially for the geophysicist.Pure Applied
Geophysics, 131 , 5–42.
Manrubia, S. C. & Sole ́, R. V. (1996). Self-
organized criticality in rainforest dynamics.
Chaos, Solutions and Fractals, 7 , 523–541.
Margalef, R. (1996). Information and uncertainty
in living systems, a view from ecology.
BioSystems, 38 , 141–146.
Margalef, R. (1997).Our Biosphere, ed. O. Kinne.
Oldendorf/Luhe, Germany: Ecology
Institute.
Marquet, P. A., Quin ̃ ones, R. A., Abades S.et al.
(2005). Scaling and power-laws in ecological
systems.The Journal of Experimental Biology,
208 , 1749–1769.
McGill, B. J. (2003). A test of the unified neutral
theory of biodiversity.Nature, 422 , 881–884.
Milne, B. T. (1998). Motivation and beliefs of
complex system approaches in ecology.
Ecosystems, 1 , 449–456.
Nee, S., Read, A. F., Greenwood, J. J. D. & Harvey,
P. H. (1991). The relationship between
abundance and body size in British birds.
Nature, 351 , 312–313.
Pascual, M., Ascioti, F. A. & Caswell, H. (1995).
Intermittency in the plankton: a multi-
fractal analysis of zooplankton biomass

BODY SIZE AND SCALE INVARIANCE 165
Free download pdf