Plant Tropisms

(Frankie) #1

Pickett, F. B., A. K. Wilson and M. Estelle. 1990. The aux1Mutation of ArabidopsisConfers Both
Auxin and Ethylene Resistance. Plant Physiol.94: 1462–6.
Plieth, C. and A. J. Trewavas. 2002. Reorientation of Seedlings in the Earth’s Gravitational Field
Induces Cytosolic Calcium Transients. Plant Physiol129: 786–96.
Poupart, J., A. M. Rashotte, G. K. Muday and C. S. Waddell. 2005. The rib1Mutant of Arabidopsis
Has Alterations in Indole-3-Butyric Acid Transport, Hypocotyl Elongation, and Root
Architecture.Plant Physiol139: 1460–71.
Pufky, J., Y. Qiu, M. V. Rao, P. Hurban and A. M. Jones. 2003. The Auxin-Induced Transcriptome
for Etiolated ArabidopsisSeedlings Using a Structure/Function Approach. Funct Integr
Genomics3: 135–43.
Rahman, A., A. Ahamed, T. Amakawa, N. Goto and S. Tsurumi. 2001a. Chromosaponin I
Specifically Interacts with AUX1 Protein in Regulating the Gravitropic Response of
ArabidopsisRoots.Plant Physiol125: 990–1000.
Rahman, A., T. Amakawa, N. Goto and S. Tsurumi. 2001b. Auxin Is a Positive Regulator for
Ethylene-Mediated Response in the Growth of ArabidopsisRoots.Plant Cell Physiol42:
301–7.
Rahman, A., S. Hosokawa, Y. Oono, T. Amakawa, N. Goto and S. Tsurumi. 2002. Auxin and
Ethylene Response Interactions During ArabidopsisRoot Hair Development Dissected by
Auxin Influx Modulators. Plant Physiol130: 1908–17.
Randazzo, P. A. and D. S. Hirsch. 2004. ARF Gaps: Multifunctional Proteins That Regulate
Membrane Traffic and Actin Remodelling. Cell Signal16: 401–13.
Rashotte, A. M., S. R. Brady, R. C. Reed, S. J. Ante and G. K. Muday. 2000. Basipetal Auxin
Transport Is Required for Gravitropism in Roots of Arabidopsis.Plant Physiol122: 481–90.
Rashotte, A., A. DeLong and G. Muday. 2001. Genetic and Chemical Reductions in Protein
Phosphatase Activity Alter Auxin Transport, Gravity Response and Lateral Root Growth. Plant
Cell13: 1683–97.
Rashotte, A. M., J. Poupart, C. S. Waddell and G. K. Muday. 2003. Transport of the Two Natural
Auxins, Indole-3-Butyric Acid and Indole-3-Acetic Acid, in Arabidopsis.Plant Physiol133:
761–72.
Roman, G., B. Lubarsky, J. J. Kieber, M. Rothenberg and J. R. Ecker. 1995. Genetic Analysis of
Ethylene Signal Transduction in Arabidopsis thaliana: Five Novel Mutant Loci Integrated into
a Stress Response Pathway. Genetics139: 1393–409.
Rubery, P. H. 1990. Phytotropins: Receptors and Endogenous Ligands. Symp Soc Exp Biol44:
119–46.
Rubery, P. H. and A. R. Sheldrake. 1974. Carrier-Mediated Auxin Transport. Planta118: 101–21.
Ruegger, M., E. Dewey, L. Hobbie, D. Brown, P. Bernasconi, J. Turner, G. Muday and M. Estelle.



  1. Reduced Naphthylphthalamic Acid Binding in the tir3 Mutant of Arabidopsis Is
    Associated with a Reduction in Polar Auxin Transport and Diverse Morphological Defects.
    Plant Cell9: 745–57.
    Salisbury, F. B., L. Gillespie and P. Rorabaugh. 1988. Gravitropism in Higher Plant Shoots. V:
    Changing Sensitivity to Auxin. Plant Physiol.88: 1186–94.
    Saslowsky, D. E., U. Warek and B. S. Winkel. 2005. Nuclear Localization of Flavonoid Enzymes
    inArabidopsis.J Biol Chem280: 23735–40.
    Scott, A. C. and N. S. Allen. 1999. Changes in Cytosolic pH within ArabidopsisRoot Columella
    Cells Play a Key Role in the Early Signaling Pathway for Root Gravitropism. Plant Physiol
    121: 1291–8.
    Shin, H., H. S. Shin, Z. Guo, E. B. Blancaflor, P. H. Masson and R. Chen. 2005. Complex
    Regulation of Arabidopsis agr1/pin2-Mediated Root Gravitropic Response and Basipetal
    Auxin Transport by Cantharidin-Sensitive Protein Phosphatases. Plant J42: 188–200.


CHAPTER 3 AUXIN TRANSPORT AND THE INTEGRATION OF GRAVITROPIC GROWTH 75
Free download pdf