AMPK Methods and Protocols

(Rick Simeone) #1
Sakamoto K, Wang W, Tian R (2014) Muta-
tion in the gamma2-subunit of AMP-activated
protein kinase stimulates cardiomyocyte prolif-
eration and hypertrophy independent of glyco-
gen storage. Circ Res 114(6):966–975.
https://doi.org/10.1161/circresaha.114.302
364


  1. Folmes KD, Chan AY, Koonen DP, Pulinilk-
    unnil TC, Baczko I, Hunter BE, Thorn S,
    Allard MF, Roberts R, Gollob MH, Light PE,
    Dyck JR (2009) Distinct early signaling events
    resulting from the expression of the PRKAG2
    R302Q mutant of AMPK contribute to
    increased myocardial glycogen. Circ Cardio-
    vasc Genet 2(5):457–466. https://doi.org/
    10.1161/CIRCGENETICS.108.834564.
    CIRCGENETICS.108.834564 [pii]

  2. Xiao B, Heath R, Saiu P, Leiper FC, Leone P,
    Jing C, Walker PA, Haire L, Eccleston JF, Davis
    CT, Martin SR, Carling D, Gamblin SJ (2007)
    Structural basis for AMP binding to mamma-
    lian AMP-activated protein kinase. Nature 449
    (7161):496–500. https://doi.org/10.1038/
    nature06161. nature06161 [pii]

  3. Hamilton SR, Stapleton D, O’Donnell JB Jr,
    Kung JT, Dalal SR, Kemp BE, Witters LA
    (2001) An activating mutation in the gamma1
    subunit of the AMP-activated protein kinase.
    FEBS Lett 500(3):163–168

  4. Barnes BR, Marklund S, Steiler TL, Walter M,
    Hjalm G, Amarger V, Mahlapuu M, Leng Y,
    Johansson C, Galuska D, Lindgren K,
    Abrink M, Stapleton D, Zierath JR, Andersson
    L (2004) The 5^0 -AMP-activated protein kinase
    gamma3 isoform has a key role in carbohydrate
    and lipid metabolism in glycolytic skeletal mus-
    cle. J Biol Chem 279(37):38441–38447.
    https://doi.org/10.1074/jbc.M405533200.
    M405533200 [pii]

  5. Daniel T, Carling D (2002) Functional analysis
    of mutations in the gamma 2 subunit of
    AMP-activated protein kinase associated with
    cardiac hypertrophy and Wolff-Parkinson-
    White syndrome. J Biol Chem 277
    (52):51017–51024. https://doi.org/10.
    1074/jbc.M207093200. M207093200 [pii]

  6. Zou L, Shen M, Arad M, He H, Lofgren B,
    Ingwall JS, Seidman CE, Seidman JG, Tian R
    (2005) N488I mutation of the gamma2-
    subunit results in bidirectional changes in
    AMP-activated protein kinase activity. Circ
    Res 97(4):323–328. https://doi.org/10.
    1161/01.RES.0000179035.20319.c2. 01.
    RES.0000179035.20319.c2 [pii]

  7. Kelly BP, Russell MW, Hennessy JR, Ensing GJ
    (2009) Severe hypertrophic cardiomyopathy in
    an infant with a novel PRKAG2 gene mutation:
    potential differences between infantile and


adult onset presentation. Pediatr Cardiol 30
(8):1176–1179. https://doi.org/10.1007/
s00246-009-9521-3


  1. Yogasundaram H, Paterson ID, Graham M,
    Sergi C, Oudit GY (2016) Glycogen storage
    disease because of a PRKAG2 mutation causing
    severe biventricular hypertrophy and high-
    grade atrio-ventricular block. Circ Heart Fail
    9(8):pii: e003367.https://doi.org/10.1161/
    circheartfailure.116.003367

  2. Sternick EB, Oliva A, Gerken LM,
    Magalhaes L, Scarpelli R, Correia FS, Rego S,
    Santana O, Brugada R, Wellens HJ (2011)
    Clinical, electrocardiographic, and electrophys-
    iologic characteristics of patients with a fascicu-
    loventricular pathway: the role of PRKAG2
    mutation. Heart Rhythm 8(1):58–64.
    https://doi.org/10.1016/j.hrthm.2010.09.
    081. S1547-5271(10)01024-6 [pii]

  3. Vaughan CJ, Hom Y, Okin DA, McDermott
    DA, Lerman BB, Basson CT (2003) Molecular
    genetic analysis of PRKAG2 in sporadic Wolff-
    Parkinson-White syndrome. J Cardiovasc Elec-
    trophysiol 14(3):263–268

  4. Light PE, Wallace CH, Dyck JR (2003) Con-
    stitutively active adenosine monophosphate-
    activated protein kinase regulates voltage-
    gated sodium channels in ventricular myocytes.
    Circulation 107(15):1962–1965.https://doi.
    org/10.1161/01.CIR.0000069269.60167.
    02. 01.CIR.0000069269.60167.02 [pii]

  5. Back Sternick E, de Almeida Araujo S, Ribeiro
    da Silva Camargos E, Brasileiro Filho G (2016)
    Atrial pathology findings in a patient with
    PRKAG2 cardiomyopathy and persistent atrial
    fibrillation. Circ Arrhythm Electrophysiol 9
    (12):e004455. https://doi.org/10.1161/cir
    cep.116.004455

  6. Schott JJ, Alshinawi C, Kyndt F, Probst V,
    Hoorntje TM, Hulsbeek M, Wilde AA,
    Escande D, Mannens MM, Le Marec H
    (1999) Cardiac conduction defects associate
    with mutations in SCN5A. Nat Genet 23
    (1):20–21.https://doi.org/10.1038/12618

  7. McNair WP, Ku L, Taylor MR, Fain PR,
    Dao D, Wolfel E, Mestroni L (2004) SCN5A
    mutation associated with dilated cardiomyopa-
    thy, conduction disorder, and arrhythmia. Cir-
    culation 110(15):2163–2167. https://doi.
    org/10.1161/01.cir.0000144458.58660.bb

  8. Fatkin D, MacRae C, Sasaki T, Wolff MR,
    Porcu M, Frenneaux M, Atherton J, Vidaillet
    HJ Jr, Spudich S, De Girolami U, Seidman JG,
    Seidman C, Muntoni F, Muehle G, Johnson W,
    McDonough B (1999) Missense mutations in
    the rod domain of the lamin A/C gene as
    causes of dilated cardiomyopathy and
    conduction-system disease. N Engl J Med


616 Arash Yavari et al.

Free download pdf