Front Matter

(nextflipdebug5) #1
Chapter 7 Rehabilitation Physical Modalities 175

Torres, R., Silva, F., Pedrosa, V., Ferreira, J., & Lopes, A.



  1. The acute effect of cryotherapy on muscle
    strength and shoulder proprioception. J Sport
    Rehabil, 11, 1–24.
    Uchio, Y., Ochi, M., Fujihara, A., Adachi, N., Iwasa, J.,
    & Sakai, Y. 2003. Cryotherapy influences joint lax­
    ity and position sense of the healthy knee joint.
    Arch Phys Med Rehabil, 84, 131–135.
    Ud‐Din, S. & Bayat, A. 2014. Electrical stimulation
    and cutaneous wound healing: a review of clinical
    evidence. Healthcare (Basel), 2, 445–467.
    Upton, G. A., Tinley, P., Al‐Aubaidy, H., & Crawford, R.

  2. The influence of transcutaneous electrical
    nerve stimulation parameters on the level of pain
    perceived by participants with painful diabetic
    neuropathy: a crossover study. Diabetes Metab
    Syndr, 11, 113–118.
    Valenza, M. C., Torres‐Sánchez, I., Cabrera‐Martos, I.,
    Valenza‐Demet, G., & Cano‐Cappellacci, M. 2016.
    Acute effects of contract‐relax stretching vs.
    TENS in young subjects with anterior knee pain: a
    randomized controlled trial. J Strength Cond Res, 30,
    2271–2278.
    Vanin, A. A., Miranda, E. F., Machado, C. S., de Paiva,
    P. R., Albuquerque‐Pontes, G. M., Casalechi, H. L.,
    et al. 2016. What is the best moment to apply pho­
    totherapy when associated to a strength training
    program? A randomized, double‐blinded, pla­
    cebo‐controlled trial: phototherapy in association
    to strength training. Lasers Med Sci, 31, 1555–1564.
    Vartika, K., Jatinder, K. D., & Gauri, K. 2015. Low
    level laser therapy: a panacea for oral maladies.
    Laser Ther, 24, 215–223.
    Vasilenko, T., Slezak, M., Kovac, I., Bottkova, Z.,
    Jakubco, J., Kostelnikova, M., et al. 2010. The effect
    of equal daily dose achieved by different power
    densities of low‐level laser therapy at 635 and 670
    nm on wound tensile strength in rats: a short
    report. Photomed Laser Surg, 28, 281–283.
    Veronez, S., Assis, L., Del Campo, P., de Oliveira, F.,
    de Castro, G., Renno, A. C. & Medalha, C. C. 2017.
    Effects of different fluences of low‐level laser ther­
    apy in an experimental model of spinal cord injury
    in rats. Lasers Med Sci. 32(2), 343–349.
    Vieira, T. M., Potenzi, P., Gastaldi, L., & Botter, A.

  3. Electrode position markedly affects knee
    torque in tetanic, stimulated contractions. Eur J
    Appl Physiol, 116, 335–342.
    Wagner, V. P., Curra, M., Webber L. P., Nör, C.,
    Matte,  U., Meurer, L., & Martins, M. D. 2016.
    Photobiomodulation regulates cytokine release and
    new blood vessel formation during oral wound
    healing in rats. Lasers Med Sci, 31, 665–671.
    Wang, F.S., Yang, K.D., Chen, R.F., Wang, C.J., &
    Sheen‐Chen, S.M. 2002. Extracorporeal shock
    wave promotes growth and differentiation of
    bone‐marrow stromal cells towards osteoprogeni­


tors associated with induction of TGF‐beta1.
J Bone Joint Surg Br, 84(3), 457–461.
Wang, F. S., Yang, K. D., Kuo, Y. R., Wang, C. J.,
Sheen‐Chen, S. M., Huang, H. C., & Chen, Y. J.


  1. Temporal and spatial expression of bone
    morphogenetic proteins in extracorporeal shock
    wave‐promoted healing of segmental defect. Bone,
    32(4), 387–396.
    Wang, C.J., Wang, F.S., Huang, C.C., Yang, K.D.,
    Weng, L.H., & Huang, H.Y. 2005. Treatment for
    osteonecrosis of the femoral head: comparison of
    extracorporeal shock waves with core decompres­
    sion and bone‐grafting. J Bone Joint Surg Am,
    87(11), 2380–2387.
    Ward, A. R. & Shkuratova, N. 2002. Russian electrical
    stimulation: the early experiments. Phys Ther, 82,
    1019–1030.
    Willand, M. P., Chiang, C. D., Zhang, J. J., Kemp, S. W.,
    Borschel, G. H., & Gordon, T. 2015. Daily electrical
    muscle stimulation enhances functional recovery
    following nerve transection and repair in rats.
    Neurorehabil Neural Repair, 29, 690–700.
    Williams, K. J., Moore, H. M., & Davies, A. H. 2015.
    Haemodynamic changes with the use of neuro­
    muscular electrical stimulation compared to inter­
    mittent pnuematic compression. Phlebology, 30,
    365–372.
    Williams, K. J., Ravikumar, R., Gaweesh, A. S., Moore,
    H. M., Lifsitz, A. D., Lane, T. R., et  al. 2017. A
    review of the evidence to support neuromuscular
    electrical stimulation in the prevention and man­
    agement of venous disease. Adv Exp Med Biol, 906,
    377–386.
    Wright, J. G., Araki, C. T., Belkin, M., & Hobsom, R. W.

  2. Postischemic hypothermia diminishes skeletal
    muscle reperfusion edema. J Surg Res, 47, 389–396.
    Xia, Z., Sato, A., Hughes, M. A., & Cherry, G. W. 2000.
    Stimulation of fibroblast growth in vitro by inter­
    mittent radiant warming. Wound Repair Regen, 8,
    138–144.
    Yadav, A. & Gupta, A. 2017. Non‐invasive red and
    near‐infrared wavelength‐induced photobiomod­
    ulation: promoting impaired cutaneous wound
    healing. Photodermatol Photoimmunol Photomed,
    33(1), 4–13.
    Yarboro, D. D. & Smith, R. 2014. Transcutaneous elec­
    trical nerve stimulation to manage a lower extremity
    wound complicated by peripheral arterial disease:
    a case report. Ostomy Wound Manage, 60, 40–45.
    Yeğin, T., Altan, L., & Kasapoğlu Aksoy, M. 2017. The
    effect of therapeutic ultrasound on pain and phys­
    ical function in patients with knee osteoarthritis.
    Ultrasound Med Biol, 43, 187–194.
    Yildirim, M. A., Ones, K,. & Celik, E. C. 2013.
    Comparison of ultrasound therapy of various
    durations in the treatment of subacromial impinge­
    ment syndrome. J Phys Ther Sci, 25, 1151–1154.

Free download pdf