Science - USA (2022-05-06)

(EriveltonMoraes) #1

eCO2 may not necessarily result in higher
woody cover. Possible explanations for the
small CO 2 effect on woody cover are that it
can be counteracted by impacts from climate-
driven changes ( 51 ) or by water or nutrient
limitations on vegetation productivity ( 17 ), or
fire could limit woody cover expansion in tropi-
cal grasslands and savannas ( 22 )[butsee( 28 )].
Generating comparable, high-resolution, multi-
proxy records to test our findings in different
biomes across the tropics is now a priority.
Our study confirms that an improved under-
standing of vegetation community change (C 4
versus C 3 plant response) under eCO 2 is needed
for dynamic global vegetation and Earth sys-
tem modeling of the future. The small effects
of CO 2 on past woody cover challenges the
long-term capacity of tropical savannas and
forests to slow anthropogenically eCO 2 through
increased greening as woody taxa recruitment
and growth are enhanced through CO 2 fertil-
ization effects, as predicted by these models
( 14 – 16 ). Therefore, our findings suggest that
the long-term effectiveness of proposed trop-


ical vegetation-based strategies to mitigate
anthropogenic eCO 2 through enhanced car-
bon sequestration rates ( 52 , 53 ) is contingent
on sufficient moisture availability.

REFERENCES AND NOTES


  1. R. A. Houghton,Glob. Change Biol. 11 , 945–958 (2005).

  2. J. Grace, J. S. José, P. Meir, H. S. Miranda, R. A. Montes,
    J. Biogeogr. 33 , 387–400 (2006).

  3. O. L. Phillipset al.,Science 282 , 439–442 (1998).

  4. S. L. Lewis, J. Lloyd, S. Sitch, E. T. Mitchard, W. F. Laurance,
    Annu. Rev. Ecol. Evol. Syst. 40 , 529–549 (2009).

  5. W. J. Bond, G. F. Midgley,Glob. Change Biol. 6 , 865–869 (2000).

  6. S. I. Higgins, S. Scheiter,Nature 488 , 209–212 (2012).

  7. Z. Zhuet al.,Nat. Clim. Chang. 6 , 791–795 (2016).

  8. E. A. Ainsworth, S. P. Long,New Phytol. 165 , 351–371 (2005).

  9. J. R. Ehleringer, T. E. Cerling, B. R. Helliker,Oecologia 112 ,
    285 – 299 (1997).

  10. D. D. Breshearset al.,Proc. Natl. Acad. Sci. U.S.A. 102 ,
    15144 – 15148 (2005).

  11. H. D. Adamset al.,Proc. Natl. Acad. Sci. U.S.A. 106 ,
    7063 – 7066 (2009).

  12. R.J.Norby,D.R.Zak,Annu. Rev. Ecol. Evol. Syst. 42 , 181–203 (2011).

  13. S. P. Harrison, C. I. Prentice,Glob. Change Biol. 9 , 983–1004 (2003).

  14. S. Sitchet al.,Glob. Change Biol. 14 , 2015–2039 (2008).

  15. P. M. Coxet al.,Nature 494 , 341–344 (2013).

  16. C. Huntingfordet al.,Nat. Geosci. 6 , 268–273 (2013).

  17. S. Wanget al.,Science 370 , 1295–1300 (2020).

  18. P. Groenendijket al.,Glob. Chang, Biol. 21 , 3762–3776 (2015).

  19. P. van der Sleenet al.,Nat. Geosci. 8 , 24–28 (2015).
    20. P. B. Reich, S. E. Hobbie, T. D. Lee, M. A. Pastore,Science 360 ,
    317 – 320 (2018).
    21. J. Blunden, T. Boyer,Bull. Am. Meteorol. Soc. 102 , S1–S475 (2021).
    22. T. M. Shanahanet al.,Sci. Rep. 6 , 29587 (2016).
    23. D. Jolly, A. Haxeltine,Science 276 , 786–788 (1997).
    24. H. Wu, J. Guiot, S. Brewer, Z. Guo,Clim. Dyn. 29 , 211–229 (2007).
    25. K. Izumi, A. Lézine,Quat. Sci. Rev. 152 , 93–103 (2016).
    26. C. E. R. Lehmannet al.,Science 343 , 548–552 (2014).
    27. G. P. Hempson, S. Archibald, W. J. Bond,Science 350 ,
    1056 – 1061 (2015).
    28. E. M. Veenendaalet al.,New Phytol. 218 , 153–166 (2018).
    29. C. S. Miller, W. D. Gosling,Quat. Sci. Rev. 84 ,7–25 (2014).
    30. C. S. Miller, W. D. Gosling, D. B. Kemp, A. L. Coe, I. Gilmour,
    J. Quaternary Sci. 31 , 671–677 (2016).
    31. T. M. Shanahan, J. T. Overpeck, W. E. Sharp, C. A. Scholz,
    J. A. Arko,Hydrol. Processes 21 , 1678–1691 (2007).
    32. M. Sankaranet al.,Nature 438 , 846–849 (2005).
    33. See the supplementary materials.
    34. W. D. Gosling, P. B. Holden,J. Quaternary Sci. 26 , 463–467 (2011).
    35. C. Koeberlet al.,Sci. Drill. 1 , 23–27 (2005).
    36. P. B. Holdenet al.,Clim. Past 6 , 431–443 (2010).
    37. D. Lüthiet al.,Nature 453 , 379–382 (2008).
    38. D. R. Anderson, K. P. Burnham, W. L. Thompson,J. Wildl.
    Manage. 64 , 912–923 (2000).
    39. F. Van Langeveldeet al.,Ecology 84 , 337–350 (2003).
    40. O. L. Phillipset al.,Science 323 , 1344–1347 (2009).
    41. V. M. Muiruriet al.,Palaeogeogr. Palaeoclimatol. Palaeoecol.
    567 , 110247 (2021).
    42. R. B. Owenet al.,Proc. Natl. Acad. Sci. U.S.A. 115 , 11174–11179 (2018).
    43. S. J. Ivory, A. M. Lézine, A. Vincens, A. S. Cohen,Glob. Chang. Biol.
    24 , 2939–2951 (2018).
    44. S. Kaboth-Bahret al.,Proc. Natl. Acad. Sci. U.S.A. 118 ,
    e2018277118 (2021).
    45. L. J. Quicket al.,Quat. Int. 404 , 136–149 (2016).
    46. A. M. Lézine, K. Izumi, M. Kageyama, G. Achoundong,Science
    363 , 177–181 (2019).
    47. W. D. Gosling, E. M. L. Scerri, S. Kaboth-Bahr,Philos. Trans. R.
    Soc. Lond. B Biol. Sci. 377 , 20200483 (2022).
    48. K. W. Tomlinsonet al.,J. Ecol. 100 , 1113–1121 (2012).
    49. C. C. F. Boonmanet al.,New Phytol. 227 , 156–167 (2020).
    50. A. M. Hoffman, J. A. Bushey, T. W. Ocheltree, M. D. Smith,
    New Phytol. 227 , 352–364 (2020).
    51. J. Liuet al.,Science 358 , eaam5690 (2017).
    52. M. J. P. Sullivanet al.,Science 368 , 869–874 (2020).
    53. J. F. Bastinet al.,Science 365 , 76–79 (2019).
    54. Data for: W. D. Gosling, C. S. Miller, T. M. Shanahan, P. B. Holden,
    J. T. Overpeck, F. van Langevelde, A stronger role for long-term
    moisture change than for CO 2 in determining tropical woody
    vegetation change, Figshare (2022); https://doi.org/10.6084/m9.
    figshare.18319466.


ACKNOWLEDGMENTS
We thank four anonymous reviewers and the editor for their extensive
comments, which have no doubt helped to improve the quality
of this manuscript.Funding:The past environmental change data
from Lake Bosumtwi used in this study were funded by a NERC/The
Open University Charter studentship (NE/H525054/1 to C.S.M.)
and a NERC New Investigator Award (NE/G000824/1 to W.D.G.).
We thank the Lake Bosumtwi Drilling Project team, the International
Continental Drilling Program, the US National Science Foundation,
and National lacustrine core repository (LacCore) USA for
supporting the acquisition and curation of Bosumtwi sediment
cores and age model data.Author contributions:The study
was conceived and developed by W.D.G. and F.v.L. The past
environmental change data from Bosumtwi was generated by C.S.M.
and W.D.G. The statistical analysis was conducted by F.v.L. Expertise
on past climate change and the Bosumwti sedimentary record was
provided by T.M.S. and J.T.O. Expertise on Earth system modeling
was provided by P.B.H. The manuscript was written by W.D.G. and
F.v.L. with contributions from all authors.Competing interests:The
authors declare no competing interests.Data and materials
availability:The past environmental change data reported in this
manuscript are archived in Figshare ( 54 ).

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abg4618
Materials and Methods
Figs. S1 to S8
Table S1
References ( 55 – 93 )
Submitted 12 March 2021; accepted 29 March 2022
10.1126/science.abg4618

656 6 MAY 2022¥VOL 376 ISSUE 6593 science.orgSCIENCE


Fig. 3. Distributions of the standardized coefficients for the predictor variables in the SEMs for the
~500,000-year interval for Bosumtwi (Fig. 2C).The SEMs were run against 1000 possible alternative versions
of the chronology to explore for possible bias caused by chronological uncertainty. The predictor variables are
shown per response variable (fire and woody cover). The most important drivers of woody cover are moisture
availability and fire because they do not include zero in their distributions. The statistics are reported in ( 33 ).


RESEARCH | REPORTS

Free download pdf