- B. W. Griscomet al., Natural climate solutions.Proc. Natl.
Acad. Sci. U.S.A. 114 , 11645–11650 (2017). doi:10.1073/
pnas.1710465114; pmid: 29078344 - P. Taillardat, B. S. Thompson, M. Garneau, K. Trottier,
D. A. Friess, Climate change mitigation potential of wetlands
and the cost-effectiveness of their restoration.Interface Focus
10 , 20190129 (2020). doi:10.1098/rsfs.2019.0129;
pmid: 32832065 - C. Schwarzet al., Self-organization of a biogeomorphic
landscape controlled by plant life-history traits.Nat. Geosci. 11 ,
672 – 677 (2018). doi:10.1038/s41561-018-0180-y - C. Wang, S. Temmerman, Does biogeomorphic feedback lead
to abrupt shifts between alternative landscape states?: An
empirical study on intertidal flats and marshes.J. Geophys.
Res. Earth Surf. 118 , 229–240 (2013). doi:10.1029/
2012JF002474 - H. Rydin, J. K. Jeglum,The Biology of Peatlands(Oxford Univ.
Press, 2013). - P. S. Maxwellet al., The fundamental role of ecological
feedback mechanisms for the adaptive management of
seagrass ecosystems—A review.Biol. Rev. Camb. Philos. Soc.
92 , 1521–1538 (2017). doi:10.1111/brv.12294; pmid: 27581168 - E. B. Barbieret al., The value of estuarine and coastal
ecosystem services.Ecol. Monogr. 81 , 169–193 (2011).
doi:10.1890/10-1510.1 - J. H. C. Dau, Ansicht einiger der größeren und kleineren Moore
Holsteins und Schleswigs, nebst daraus abgeleitete
Betrachtungen (Overview of some of the larger and smaller
peatlands of Holstein and Schleswig with some considerations
derived from them).Schleswig-Holstein-Lauenburgsche Prov.
10 , 73–82 (1821). - Materials and methods are available as supplementary
materials. - S. Emerson, J. I. Hedges, Processes controlling the organic
carbon content of open ocean sediments.Paleoceanography 3 ,
621 – 634 (1988). doi:10.1029/PA003i005p00621 - K. MacDickenet al.,Global Forest Resources Assessment 2015:
How Are the World’s Forests Changing?(Food and Agriculture
Organization, ed. 2, 2016). - X. Ouyang, S. Y. Lee, Updated estimates of carbon
accumulation rates in coastal marsh sediments.
Biogeosciences 11 , 5057–5071 (2014). doi:10.5194/bg-11-
5057-2014 - J. J. Middelburg, J. Nieuwenhuize, R. K. Lubberts,
O. van de Plassche, Organic carbon isotope systematics of
coastal marshes.Estuar. Coast. Shelf Sci. 45 , 681–687 (1997).
doi:10.1006/ecss.1997.0247 - H. Kennedyet al., Seagrass sediments as a global carbon sink:
Isotopic constraints.Global Biogeochem. Cycles 24 , n/a
(2010). doi:10.1029/2010GB003848 - P. Muelleret al., Assessing the long-term carbon-sequestration
potential of the semi-natural salt marshes in the European
Wadden Sea.Ecosphere 10 , e02556 (2019). doi:10.1002/
ecs2.2556 - S. D. Sasmitoet al., Organic carbon burial and sources in soils
of coastal mudflat and mangrove ecosystems.Catena 187 ,
104414 (2020). doi:10.1016/j.catena.2019.104414 - H. Joosten, D. Clarke,Wise Use of Mires and Peatlands—
Background and Principles Including a Framework for Decision-
making(International Mire Conservation Group and
International Peat Society, 2002). - L. P. M. Lamerset al., Ecological restoration of rich fens in
Europe and North America: From trial and error to an
evidence-based approach.Biol. Rev. Camb. Philos. Soc. 90 ,
182 – 203 (2015). doi:10.1111/brv.12102; pmid: 24698312 - J. Schoelyncket al., The trapping of organic matter within
plant patches in the channels of the Okavango Delta: A matter
of quality.Aquat. Sci. 79 , 661–674 (2017). doi:10.1007/
s00027-017-0527-2 - S. F. Stofberg, J. van Engelen, J.-P. M. Witte, S. E. van der Zee,
Effects of root mat buoyancy and heterogeneity on floating fen
hydrology.Ecohydrology 9 , 1222–1234 (2016). doi:10.1002/
eco.1720 - C. Fritz, D. I. Campbell, L. A. Schipper, Oscillating peat surface
levels in a restiad peatland, New Zealand—Magnitude and
spatiotemporal variability.Hydrol. Processes 22 , 3264– 3274
(2008). doi:10.1002/hyp.6912 - D. J. Greenwood, The effect of oxygen concentration on the
decomposition of organic materials in soil.Plant Soil 14 ,
360 – 376 (1961). doi:10.1007/BF01666294 - L. P. M. Lamerset al., Microbial transformations of nitrogen,
sulfur, and iron dictate vegetation composition in wetlands: A
review.Front. Microbiol. 3 , 156 (2012). doi:10.3389/
fmicb.2012.00156; pmid: 22539932
31. P. Rovira, V. R. Vallejo, Labile and recalcitrant pools of carbon
and nitrogen in organic matter decomposing at different
depths in soil: An acid hydrolysis approach.Geoderma 107 ,
109 – 141 (2002). doi:10.1016/S0016-7061(01)00143-4
32. N. van Breemen, How Sphagnum bogs down other plants.
Trends Ecol. Evol. 10 , 270–275 (1995). doi:10.1016/0169-5347
(95)90007-1; pmid: 21237035
33. R. S. Clymo, The origin of acidity in Sphagnum bogs.Bryologist
67 , 427–431 (1964). doi:10.1639/0007-2745(1964)67[427:
TOOAIS]2.0.CO;2
34. E. Gorham, S. J. Eisenreich, J. Ford, M. V. Santelmann, in
Chemical Processes in Lakes(John Wiley and Sons, 1985),
pp. 339–362.
35. Z. Yu, J. Loisel, D. P. Brosseau, D. W. Beilman, S. J. Hunt,
Global peatland dynamics since the Last Glacial Maximum.
Geophys. Res. Lett. 37 , 43584 (2010). doi:10.1029/
2010GL043584
36. D. M. Younget al., Misinterpreting carbon accumulation rates
in records from near-surface peat.Sci. Rep. 9 , 17939 (2019).
doi:10.1038/s41598-019-53879-8; pmid: 31784556
37. A. Prager, A. Barthelmes, H. Joosten, A touch of tropics in
temperate mires: On Alder carrs and carbon cycles.Peatlands
Int. 2 , 26–29 (2006).
38. I. Aselmann, P. J. Crutzen, Global distribution of natural
freshwater wetlands and rice paddies, their net primary
productivity, seasonality and possible methane emissions.
J. Atmos. Chem. 8 , 307–358 (1989). doi:10.1007/BF00052709
39. C. M. Duarte, J. Cebrián, The fate of marine autotrophic
production.Limnol. Oceanogr. 41 , 1758–1766 (1996).
doi:10.4319/lo.1996.41.8.1758
40. S. T. Chew, J. B. Gallagher, Accounting for black carbon lowers
estimates of blue carbon storage services.Sci. Rep. 8 , 2553
(2018). doi:10.1038/s41598-018-20644-2; pmid: 29416101
41. D. C. Donatoet al., Mangroves among the most carbon-rich
forests in the tropics.Nat. Geosci. 4 , 293–297 (2011).
doi:10.1038/ngeo1123
42. J. L. Breithaupt, J. M. Smoak, T. J. SmithIII, C. J. Sanders,
A. Hoare, Organic carbon burial rates in mangrove sediments:
Strengthening the global budget.Global Biogeochem. Cycles
26 , 2012GB004375 (2012). doi:10.1029/2012GB004375
43. S. Bouillonet al., Mangrove production and carbon sinks: A
revision of global budget estimates.Global Biogeochem. Cycles
22 , n/a (2008). doi:10.1029/2007GB003052
44. S. Bouillon, R. M. Connolly, inEcological Connectivity Among
Tropical Coastal Ecosystems(Springer, 2009), pp. 45–70.
45. T. J. Boumaet al., Trade-offs related to ecosystem engineering:
A case study on stiffness of emerging macrophytes.Ecology 86 ,
2187 – 2199 (2005). doi:10.1890/04-1588
46. R. J. M. Temminket al., Mimicry of emergent traits amplifies
coastal restoration success.Nat. Commun. 11 , 3668 (2020).
doi:10.1038/s41467-020-17438-4; pmid: 32699271
47. M. Van de Broeket al., Long-term organic carbon
sequestration in tidal marsh sediments is dominated by old-
aged allochthonous inputs in a macrotidal estuary.Glob.
Change Biol. 24 , 2498–2512 (2018). doi:10.1111/gcb.14089;
pmid: 29431887
48. K. Koop-Jakobsen, F. Wenzhöfer, The dynamics of plant-
mediated sediment oxygenation inSpartina anglica
rhizospheres—A planar optode study.Estuaries Coasts 38 ,
951 – 963 (2015). doi:10.1007/s12237-014-9861-y
49. M. E. Gonneea, A. Paytan, J. A. Herrera-Silveira, Tracing
organic matter sources and carbon burial in mangrove
sediments over the past 160 years.Estuar. Coast. Shelf Sci. 61 ,
211 – 227 (2004). doi:10.1016/j.ecss.2004.04.015
50. R. K. Jameset al., Maintaining tropical beaches with seagrass
and algae: A promising alternative to engineering solutions.
Bioscience 69 , 136–142 (2019). doi:10.1093/biosci/biy154
51. G. S. Fivashet al., Elevated micro-topography boosts growth
rates in Salicornia procumbens by amplifying a tidally-driven
oxygen pump: Implications for natural recruitment and restoration.
Ann. Bot. 125 , 353–364 (2019). doi:10.1093/aob/mcz137
52. T. B. Atwoodet al., Predators help protect carbon stocks in
blue carbon ecosystems.Nat. Clim. Chang. 5 , 1038– 1045
(2015). doi:10.1038/nclimate2763
53. L. Ren, K. Jensen, P. Porada, P. Mueller, Biota-mediated carbon
cycling-A synthesis of biotic-interaction controls on blue
carbon.Ecol. Lett. 25 , 521–540 (2022). doi:10.1111/ele.13940;
pmid: 35006633
54. L. G. Gilliset al., Potential for landscape-scale positive
interactions among tropical marine ecosystems.Mar. Ecol.
Prog. Ser. 503 , 289–303 (2014). doi:10.3354/meps10716
55. C. J. T. Ladd, M. F. Duggan‐Edwards, T. J. Bouma, J. F. Pages,
M. W. Skov, Sediment supply explains long‐term and large‐
scale patterns in salt marsh lateral expansion and erosion.
Geophys. Res. Lett. 46 , 11178–11187 (2019). doi:10.1029/
2019GL083315
- C. M. Duarte, I. J. Losada, I. E. Hendriks, I. Mazarrasa, N. Marbà,
The role of coastal plant communities for climate change
mitigation and adaptation.Nat. Clim. Chang. 3 , 961–968 (2013).
doi:10.1038/nclimate1970 - M. L. Kirwan, J. P. Megonigal, Tidal wetland stability in the face
of human impacts and sea-level rise.Nature 504 , 53– 60
(2013). doi:10.1038/nature12856; pmid: 24305148 - M. L. Kirwan, S. Temmerman, E. E. Skeehan,
G. R. Guntenspergen, S. Fagherazzi, Overestimation of marsh
vulnerability to sea level rise.Nat. Clim. Chang. 6 , 253– 260
(2016). doi:10.1038/nclimate2909 - A. Jacotot, C. Marchand, B. E. Rosenheim, E. W. Domack,
M. Allenbach, Mangrove sediment carbon stocks along an
elevation gradient: Influence of the late Holocene marine
regression (New Caledonia).Mar. Geol. 404 , 60–70 (2018).
doi:10.1016/j.margeo.2018.07.005 - J. Leifeld, L. Menichetti, The underappreciated potential of
peatlands in global climate change mitigation strategies.Nat.
Commun. 9 , 1071 (2018). doi:10.1038/s41467-018-03406-6;
pmid: 29540695 - K. B. Gedan, B. R. Silliman, M. D. Bertness, Centuries of
human-driven change in salt marsh ecosystems.Ann. Rev. Mar.
Sci. 1 , 117–141 (2009). doi:10.1146/annurev.
marine.010908.163930; pmid: 21141032 - M. Waycottet al., Accelerating loss of seagrasses across the
globe threatens coastal ecosystems.Proc. Natl. Acad. Sci. U.S.A.
106 , 12377–12381 (2009). doi:10.1073/pnas.0905620106;
pmid: 19587236 - Millennium Ecosystem Assessment,Ecosystems and Human
Well-Being: Synthesis(Island Press, 2005). - R. J. Orthet al., A Global Crisis for Seagrass Ecosystems.
Bioscience 56 , 987–996 (2006). doi:10.1641/0006-3568
(2006)56[987:AGCFSE]2.0.CO;2 - M. F. Adameet al., Future carbon emissions from global
mangrove forest loss.bioRxiv15571 [Preprint] (2020).
doi:10.1101/2020.08.27.271189 - C. E. Lovelock, R. Reef, Variable impacts of climate change on
blue carbon.One Earth 3 , 195–211 (2020). doi:10.1016/
j.oneear.2020.07.010 - M. R. Turetskyet al., Global vulnerability of peatlands to fire and
carbon loss.Nat. Geosci. 8 , 11–14 (2015). doi:10.1038/ngeo2325 - G. Hugeliuset al., Large stocks of peatland carbon and
nitrogen are vulnerable to permafrost thaw.Proc. Natl. Acad.
Sci. U.S.A. 117 , 20438–20446 (2020). doi:10.1073/
pnas.1916387117; pmid: 32778585 - M. R. Turetskyet al., Carbon release through abrupt
permafrost thaw.Nat. Geosci. 13 , 138–143 (2020).
doi:10.1038/s41561-019-0526-0 - K. Hergoualc’h, L. V. Verchot, Stocks and fluxes of carbon
associated with land use change in Southeast Asian tropical
peatlands: A review.Global Biogeochem. Cycles10.1029/
2009GB003718 (2011). doi:10.1029/2009GB003718 - B. Tiemeyeret al., High emissions of greenhouse gases from
grasslands on peat and other organic soils.Glob. Change Biol.
22 , 4134–4149 (2016). doi:10.1111/gcb.13303; pmid: 27029402 - A. Güntheret al., Prompt rewetting of drained peatlands
reduces climate warming despite methane emissions.
Nat. Commun. 11 , 1644 (2020). doi:10.1038/s41467-020-
15499-z; pmid: 32242055 - Z. Wanget al., Human-induced erosion has offset one-third of
carbon emissions from land cover change.Nat. Clim. Chang. 7 ,
345 – 349 (2017). doi:10.1038/nclimate3263 - L. Pendletonet al., Estimating global“blue carbon”emissions
from conversion and degradation of vegetated coastal
ecosystems.PLOS ONE 7 , e43542 (2012). doi:10.1371/journal.
pone.0043542; pmid: 22962585 - P. I. Macreadieet al., Blue carbon as a natural climate solution.
Nat. Rev. Earth Environ. 2 , 826–839 (2021). doi:10.1038/
s43017-021-00224-1 - E. Bayraktarovet al., The cost and feasibility of marine coastal
restoration.Ecol. Appl. 26 , 1055–1074 (2016). doi:10.1890/15-
1077 ; pmid: 27509748 - R. S. DE Grootet al., Benefits of investing in ecosystem
restoration.Conserv. Biol. 27 , 1286–1293 (2013). doi:10.1111/
cobi.12158; pmid: 24112105 - E. Romijnet al., Land restoration in Latin America and the
Caribbean: An overview of recent, ongoing and planned
restoration initiatives and their potential for climate change
mitigation.Forests 10 , 510 (2019). doi:10.3390/f10060510 - R. Andersenet al., An overview of the progress and challenges
of peatland restoration in Western Europe.Restor. Ecol. 25 ,
271 – 282 (2017). doi:10.1111/rec.12415
Temminket al.,Science 376 , eabn1479 (2022) 6 May 2022 6of7
RESEARCH | REVIEW