LITERATURE CITED LC–9
- Mendelson, T. C. 2003. Sexual isolation evolves faster than hybrid
inviability in a diverse and sexually dimorphic genus of fish
(Percidae: Etheostoma). Evolution 57: 317–327. - Merrill, R. M., and 6 others. 2012. Disruptive ecological selection on a
mating cue. Proc. R. Soc. Lond. B 279: 4907–4913. - Michel, A. P., S. Sim, T. H. Q. Powell, M. S. Taylor, P. Nosil, and J.
L. Feder. 2010. Widespread genomic divergence during sympatric
speciation. Proc. Natl. Acad. Sci. USA 107: 9724–9729. - Muller, H. J. 1942. Isolating mechanisms, evolution and temperature.
Biol. Symp. 6: 71–125. - Navarro, A., and N. H. Barton. 2003. Accumulating postzygotic
isolation genes in parapatry: A new twist on chromosomal
speciation. Evolution 57: 447–459. - Nosil, P. 2012. Ecological Speciation. Oxford University Press, Oxford.
- Nosil, P., and D. Schluter. 2011. The genes underlying the process of
speciation. Trends Ecol. Evol. 26: 160–167. - Ochman, H., E. Lerat, and V. Daubin. 2005. Examining bacterial
species uner the specter of gene transfer and exchange. Proc. Natl.
Acad. Sci. USA 102: 6595–6599. - Otto, S. P., and J. Whitton. 2000. Polyploid incidence and evolution.
Annu. Rev. Genet. 34: 401–437. - Ownbey, M. 1950. Natural hybridization and amphiploidy in the
genus Tragopogon. Am. J. Bot. 37: 489–499. - Palumbi, S. R. 1998. Species formation and the evolution of gamete
recognition loci. In D. J. Howard and S. H. Berlocher (eds.), Endless
Forms: Species and Speciation, pp. 271–278. Oxford University Press,
New York. - Papadopulos, A. S. T., and 9 others. 2014. Evaluation of genetic
isolation within an island flora reveals unusually widespread local
adaptation and supports sympatric speciation. Phil. Trans. R. Soc., B
369: 20130342. - Phadnis, N., and H. A. Orr. 2009. A single gene causes both male
sterility and segregation distortion in Drosophila hybrids. Science 323:
376–379. - Pires, J. C., and 9 others. 2004. Molecular cytogenetic analysis of
recently evolved Tragopogon (Asteraceae) allopolyploids reveal a
karyotype that is additive of the diploid progenitors. Am. J. Bot. 91:
1022–1035. - Polly, P. D., and 9 others. 2013. Phenotypic variation across
chromosomal hybrid zones of the common shrew (Sorex araneus)
indicates reduced gene flow. PLoS ONE 8: e67455. - Polyakov, A. V., T. A. White, R. M. Jones, P. M. Borodin, and J. B.
Searle. 2011. Natural hybridization between extremely divergent
chromosomal races of the common shrew (Sorex araneus, Soricidae,
Soricomorpha): Hybrid zone in Siberia. J. Evol. Biol. 24: 1393–1402. - Presgraves, D. C. 2010. The molecular evolutionary basis of species
formation. Nat. Rev. Genet. 11: 175–180. - Price, T. D. 2008. Speciation in Birds. Roberts and Co., Greenwood
Village, CO. - Proudfoot, G. A., F. R. Gehlbach, and R. L. Honeycutt. 2007.
Mitochondrial DNA variation and phylogeography of the Eastern
and Western Screech-Owls. Condor 109: 617–627. - Ramsey, J. 2011. Polyploidy and ecological adaptation in wild yarrow.
Proc. Natl. Acad. Sci. USA 108: 7096–7101. - Ramsey, J., and D. W. Schemske. 1998. Pathways, mechanisms, and
rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst.
29: 467–502. - Ramsey, J., H. D. Bradshaw, and D. W. Schemske. 2003. Components
of reproductive isolation between the monkeyflowers Mimulus lewisii
and M. cardinalis (Scrophulariaceae). Evolution 57: 1520–1534. - Rieseberg, L. H. 2006. Hybrid speciation in wild sunflowers. Ann. Mo.
Bot. Gard. 93: 34–48. - Rieseberg, L. H., and 7 others. 2003. Majory ecological transitions in
wild sunflowers facilitated by hybridization. Science 301: 1211–1216.
83. Rieseberg, L. H., J. Whitton, and K. Gardner. 1999. Hybrid zones
and the genetic architecture of a barrier to gene flow between two
sunflower species. Genetics 152: 713–727.
84. Rodríguez, D. J. 1996. A model for the establishment of polyploidy in
plants. Am. Nat. 147: 33–46.
85. Roelofs, W., and 8 others. 1987. Sex pheromone production and
perception in European corn borer moths is determined by both
autosomal and sex-linked genes. Proc. Natl. Acad. Sci. USA 84:
7585–7589.
86. Rosenblum, E. B., and L. J. Harmon. 2011. “Same same but different”:
Replicated ecological speciation at White Sands. Evolution 65:
946–960.
87. Rosenblum, E. B., B. A. J. Sarver, J. W. Brown, and 6 others. 2012.
Goldilocks meets Santa Rosalia: An ephemeral speciation model
explains patterns of diversification across time scales. Evol. Biol. 39:
255–261.
88. Ryan, M. J., and A. S. Rand. 1993. Species recognition and sexual
selection as a unitary problem in animal communication. Evolution
47: 647–657.
89. Salzburger, W., B. Van Boexlaer, and A. S. Cohen. 2014. Ecology and
evolution of the African Great Lakes and their faunas. Annu. Rev.
Ecol. Evol. Syst. 45: 519–545.
90. Savolainen, V., and 9 others. 2006. Sympatric speciation in palms on
an oceanic island. Nature 441: 210–213.
91. Schemske, D. W. 2010. Adaptation and the origin of species. Am. Nat.
176: S4–S25.
92. Schemske, D. W., and H. D. Bradshaw, Jr. 1999. Pollinator preference
and the evolution of floral traits in monkeyflowers (Mimulus). Proc.
Natl. Acad. Sci. USA 96: 11910–11915.
93. Schluter, D. 2000. The Ecology of Adaptive Radiation. Oxford
University Press, Oxford.
94. Seddon, N., and 9 others. 2013. Sexual selection accelerates signal
evolution during speciation in birds. Proc. Royal Soc. Lond. B 280:
20131065. doi:10.1098/rspb.2013.1065.
95. Seehausen, O. 2006. African cichlid fish: A model system in adaptive
radiation research. Proc. R. Lond. Soc. B 273: 1987–1998.
96. Seehausen, O., J. J. M. van Alphen, and F. Witte. 1997. Cichlid fish
diversity threatened by eutrophication that curbs sexual selection.
Science 277: 1808–1811.
97. Slatkin, M. 1996. In defense of founder-effect speciation. Am. Nat.
147: 493–505.
98. Stebbins, R. C. 1954. Amphibians and Reptiles of Western North
America. McGraw-Hill, New York.
99. Swanson, W. J., and V. D. Vacquier. 2002. Reproductive protein
evolution. Annu. Rev. Ecol. Syst. 33: 161–179. - Szymura, J. M. 1993. Analysis of hybrid zones with Bombina. In R.
G. Harrison (ed.), Hybrid Zones and the Evolutionary Process, pp.
261–289. Oxford University Press, New York. - Templeton, A. R. 2008. The reality and importance of founder
speciation in evolution. BioEssays 30: 470–479. - Tilley, S. G., P. A. Verrell, and S. J. Arnold. 1990. Correspondence
between sexual isolation and allozyme differentiation: A test in the
salamander Desmognathus ochrophaeus. Proc. Natl. Acad. Sci. USA 87:
2715–2719. - Tobias, J. A., and 6 others. 2010. Song divergence by sensory drive in
Amazonian birds. Evolution 64: 2820–2839. - Turelli, M., and L. C. Moyle. 2007. Asymmetric postmating isolation:
Darwin’s corollary to Haldane’s rule. Genetics 176: 1059–1088. - Wagner, C. E., L. J. Harmon, and O. Seehausen. 2014. Cichlid species-
area relationships are shaped by adaptive radiations that scale with
area. Ecol. Lett. 17: 583–592. - Weir, J. T., and T. D. Price. 2011. Limits to speciation inferred from
times to secondary sympatry and ages of hybridizing species along a
latitudinal gradient. Am. Nat. 177: 462–469. - Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B.
Greenspoon, and L. H. Rieseberg. 2009. The frequency of polyploid
25_EVOL4E_LIT_CITED.indd 9 3/22/17 1:58 PM