Synthetic Biology Parts, Devices and Applications

(Nandana) #1
References 127

79 Denis, C.L., Ferguson, J., and Young, E.T. (1983) mRNA levels for the
fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease
upon growth on a nonfermentable carbon source. J. Biol. Chem., 258 (2),
1165–1171.
80 Partow, S., Siewers, V., Bjørn, S., Nielsen, J., and Maury, J. (2010)
Characterization of different promoters for designing a new expression vector in
Saccharomyces cerevisiae. Ye a s t, 27 (11), 955–964.
81 Chambers, A., Tsang, J.S., Stanway, C., Kingsman, A.J., and Kingsman, S.M.
(1989) Transcriptional control of the Saccharomyces cerevisiae PGK gene by
RAP1. Mol. Cell. Biol., 9 (12), 5516–5524.
82 Baker, H.V. (1991) GCR1 of Saccharomyces cerevisiae encodes a DNA binding
protein whose binding is abolished by mutations in the CTTCC sequence motif.
Proc. Natl. Acad. Sci. U.S.A., 88 (21), 9443–9447.
83 Bitter, G.A., Chang, K.K., and Egan, K.M. (1991) A multi‐component upstream
activation sequence of the Saccharomyces cerevisiae glyceraldehyde‐3‐phosphate
dehydrogenase gene promoter. Mol. Gen. Genet., 231 (1), 22–32.
84 Holland, M.J., Yokoi, T., Holland, J.P., Myambo, K., and Innis, M.A. (1987)
The GCR1 gene encodes a positive transcriptional regulator of the enolase and
glyceraldehyde‐3‐phosphate dehydrogenase gene families in Saccharomyces
cerevisiae. Mol. Cell. Biol., 7 (2), 813–820.
85 Pfeifer, K., Kim, K.S., Kogan, S., and Guarente, L. (1989) Functional dissection
and sequence of yeast HAP1 activator. Cell, 56 (2), 291–301.
86 Munholland, J.M., Kelly, J.K., and Wildeman, A.G. (1990) DNA sequences
required for yeast actin gene transcription do not include conserved CCAAT
motifs. Nucleic Acids Res., 18 (20), 6061–6068.
87 Cottrelle, P., Thiele, D., Price, V.L., Memet, S., Micouin, J.Y., Marck, C., Buhler, J.M.,
Sentenac, A., and Fromageot, P. (1985) Cloning, nucleotide sequence, and
expression of one of two genes coding for yeast elongation factor 1 alpha. J. Biol.
Chem., 260 (5), 3090–3096.
88 Jensen, P.R. and Hammer, K. (1998) Artificial promoters for metabolic
optimization. Biotechnol. Bioeng., 58 (2‐3), 191–195.
89 Blount, B.A., Weenink, T., Vasylechko, S., and Ellis, T. (2012) Rational
diversification of a promoter providing fine‐tuned expression and orthogonal
regulation for synthetic biology. PLoS One, 7 (3), e33 279.
90 Blazeck, J., Garg, R., Reed, B., and Alper, H.S. (2012) Controlling promoter
strength and regulation in Saccharomyces cerevisiae using synthetic hybrid
promoters. Biotechnol. Bioeng., 109 (11), 2884–2895.
91 Blazeck, J. and Alper, H.S. (2013) Promoter engineering: recent advances in
controlling transcription at the most fundamental level. Biotechnol. J., 8 (1),
46–58.
92 Alper, H., Fischer, C., Nevoigt, E., and Stephanopoulos, G. (2005) Tuning genetic
control through promoter engineering. Proc. Natl. Acad. Sci. U.S.A., 102 (36),
12 678–12 683.
93 Nevoigt, E., Kohnke, J., Fischer, C.R., Alper, H., Stahl, U., and Stephanopoulos,
G. (2006) Engineering of promoter replacement cassettes for fine‐tuning of gene
expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 72 (8),
5266–5273.

Free download pdf