Synthetic Biology Parts, Devices and Applications

(Nandana) #1

162 7 Splicing and Alternative Splicing Impact on Gene Design


142 Sharma, S., Kohlstaedt, L.A., Damianov, A., Rio, D.C. et al. (2008)
Polypyrimidine tract binding protein controls the transition from exon
definition to an intron defined spliceosome. Nat. Struct. Mol. Biol., 15 ,
183–191.
143 Sharma, S., Maris, C., Allain, F.H., and Black, D.L. (2011) U1 snRNA directly
interacts with polypyrimidine tract-binding protein during splicing repression.
Mol. Cell, 41 , 579–588.
144 Lamichhane, R., Daubner, G.M., Thomas-Crusells, J., Auweter, S.D. et al.
(2010) RNA looping by PTB: evidence using FRET and NMR spectroscopy for
a role in splicing repression. Proc. Natl. Acad. Sci. U.S.A., 107 , 4105–4110.
145 Chiou, N.T., Shankarling, G., and Lynch, K.W. (2013) hnRNP L and hnRNP A1
induce extended U1 snRNA interactions with an exon to repress spliceosome
assembly. Mol. Cell, 49 , 972–982.
146 Zhu, J., Mayeda, A., and Krainer, A.R. (2001) Exon identity established through
differential antagonism between exonic splicing silencer-bound hnRNP A1 and
enhancer-bound SR proteins. Mol. Cell, 8 , 1351–1361.
147 Chen, C.D., Kobayashi, R., and Helfman, D.M. (1999) Binding of hnRNP H to
an exonic splicing silencer is involved in the regulation of alternative splicing of
the rat beta-tropomyosin gene. Genes Dev., 13 , 593–606.
148 Chou, M.Y., Rooke, N., Turck, C.W., and Black, D.L. (1999) hnRNP H is a
component of a splicing enhancer complex that activates a c-src alternative
exon in neuronal cells. Mol. Cell. Biol., 19 , 69–77.
149 Barash, Y., Calarco, J.A., Gao, W., Pan, Q. et al. (2010) Deciphering the splicing
code. Nature, 465 , 53–59.
150 Beyer, A.L. and Osheim, Y.N. (1988) Splice site selection, rate of splicing, and
alternative splicing on nascent transcripts. Genes Dev., 2 , 754–765.
151 Ameur, A., Zaghlool, A., Halvardson, J., Wetterbom, A. et al. (2011) Total RNA
sequencing reveals nascent transcription and widespread co-transcriptional
splicing in the human brain. Nat. Struct. Mol. Biol., 18 , 1435–1440.
152 Bhatt, D.M., Pandya-Jones, A., Tong, A.J., Barozzi, I. et al. (2012) Transcript
dynamics of proinflammatory genes revealed by sequence analysis of
subcellular RNA fractions. Cell, 150 , 279–290.
153 Carrillo Oesterreich, F., Preibisch, S., and Neugebauer, K.M. (2010) Global
analysis of nascent RNA reveals transcriptional pausing in terminal exons.
Mol. Cell, 40 , 571–581.
154 Girard, C., Will, C.L., Peng, J., Makarov, E.M. et al. (2012) Post-transcriptional
spliceosomes are retained in nuclear speckles until splicing completion.
Nat. Commun., 3 , 994.
155 Khodor, Y.L., Menet, J.S., Tolan, M., and Rosbash, M. (2012) Cotranscriptional
splicing efficiency differs dramatically between Drosophila and mouse. RNA,
18 , 2174–2186.
156 Khodor, Y.L., Rodriguez, J., Abruzzi, K.C., Tang, C.H. et al. (2011) Nascent-seq
indicates widespread cotranscriptional pre-mRNA splicing in Drosophila.
Genes Dev., 25 , 2502–2512.
157 Windhager, L., Bonfert, T., Burger, K., Ruzsics, Z. et al. (2012) Ultrashort and
progressive 4sU-tagging reveals key characteristics of RNA processing at
nucleotide resolution. Genome Res., 22 , 2031–2042.
Free download pdf