304 14 Sequestered: Design and Construction of Synthetic Organelles
105 Li, S., Liu, L., and Chen, J. (2015) Compartmentalizing metabolic pathway in
Candida glabrata for acetoin production. Metab. Eng., 28 , 1–7. doi: 10.1016/j.
ymben.2014.11.008
106 Chen, X., Zhu, P., and Liu, L. (2016) Modular optimization of multi‐gene
pathways for fumarate production. Metab. Eng., 33 , 76–85.
107 Malhotra, K., Subramaniyan, M., Rawat, K., Kalamuddin, M., Qureshi, M.I.,
Malhotra, P. et al. (2016) Compartmentalized metabolic engineering for
artemisinin biosynthesis and effective malaria treatment by oral delivery of
plant cells. Mol. Plant, 9 , 1464–1477. doi: 10.1016/j.molp.2016.09.013
108 Klionsky, D.J., Herman, P.K., and Emr, S.D. (1990) The fungal vacuole:
composition, function, and biogenesis. Microbiol. Rev., 54 (3), 266.
109 Oikawa, A., Matsuda, F., Kikuyama, M., Mimura, T., and Saito, K. (2011)
Metabolomics of a single vacuole reveals metabolic dynamism in an alga
Chara australis. Plant Physiol., 157 (2), 544–551.
110 Hughes, A.L. and Gottschling, D.E. (2013) An early age increase in vacuolar
pH limits mitochondrial function and lifespan in yeast. Nature, 492 (7428),
261–265.
111 Martinoia, E., Maeshima, M., and Neuhaus, H.E. (2007) Vacuolar
transporters and their essential role in plant metabolism. J. Exp. Bot., 58 (1),
83–102.
112 Farooqui, J.Z., Lee, H.W., Kim, S., and Paik, W.K. (1983) Studies on
compartmentation of S‐adenosyl‐l‐methionine in Saccharomyces cerevisiae
and isolated rat hepatocytes. Biochim. Biophys. Acta, 757 (3), 342–351.
113 Bayer, T.S., Widmaier, D.M., Temme, K., Mirsky, E.A., Santi, D.V., and
Voigt, C.A. (2009) Synthesis of methyl halides from biomass using engineered
microbes. J. Am. Chem. Soc., 131 (18), 6508–6515.
114 Valls, L.A., Winther, J.R., and Stevens, T.H. (1990) Yeast carboxypeptidase
Y vacuolar targeting signal is defined by four propeptide amino acids.
J. Cell Biol., 111 (2), 361–368.
115 Lin, J.‐P., Tian, J., You, J.‐F., Jin, Z.‐H., Xu, Z.‐N., and Cen, P.‐L. (2004)
An effective strategy for the co‐production of S‐adenosyl‐l‐methionine and
glutathione by fed‐batch fermentation. Biochem. Eng. J., 21 (1), 19–25.
116 van der Klei, I.J. and Veenhuis, M. (2006) Yeast and filamentous fungi as model
organisms in microbody research. Biochim. Biophys. Acta, 1763 (12),
1364–1373.
117 Saleem, R.A., Smith, J.J., and Aitchison, J.D. (2006) Proteomics of the
peroxisome. Biochim. Biophys. Acta, 1763 (12), 1541–1551.
118 Léon, S., Goodman, J.M., and Subramani, S. (2006) Uniqueness of the
mechanism of protein import into the peroxisome matrix: transport of folded,
co‐factor‐bound and oligomeric proteins by shuttling receptors. Biochim.
Biophys. Acta, 1763 (12), 1552–1564.
119 DeLoache, W.C., Russ, Z.N., and Dueber, J.E. (2016) Towards repurposing the
yeast peroxisome for compartmentalizing heterologous metabolic pathways.
Nat. Commun., 7 , 11152. doi: 10.1038/ncomms11152
120 Sheng, J., Stevens, J., and Feng, X. (2016) Pathway compartmentalization in
peroxisome of Saccharomyces cerevisiae to produce versatile medium chain
fatty alcohols. Sci. Rep., 6 , 26884. doi: 10.1038/srep26884