Synthetic Biology Parts, Devices and Applications

(Nandana) #1
References 323

Packard Foundation, the Dreyfus Teacher-Scholar Program, and the Chicago
Biomedical Consortium with support from the Searle Funds at the Chicago
Community Trust. JAS was supported by the National Science Foundation
Graduate Research Fellowship (Grant Number DGE-1324585). The authors
declare no commercial or financial conflict of interest.


References


1 Nirenberg, M.W. and Matthaei, J.H. (1961) The dependence of cell-free protein
synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides.
Proc. Natl. Acad. Sci. U.S.A., 47 , 1588–1602.
2 Swartz, J.R. (2006) Developing cell-free biology for industrial applications. J. Ind.
Microbiol. Biotechnol., 33 , 476–485. doi: 10.1007/s10295-006-0127-y
3 Katzen, F., Chang, G., and Kudlicki, W. (2005) The past, present and future of
cell-free protein synthesis. Trends Biotechnol., 23 , 150–156. doi: 10.1016/j.
tibtech.2005.01.003
4 Zawada, J.F., Yin, G., Steiner, A.R., Yang, J., Naresh, A., Roy, S.M., Gold, D.S.,
Heinsohn, H.G., and Murray, C.J. (2011) Microscale to manufacturing scale-up of
cell-free cytokine production – a new approach for shortening protein production
development timelines. Biotechnol. Bioeng., 108 , 1570–1578. doi: 10.1002/bit.23103
5 Ranji, A., Wu, J.C., Bundy, B.C., and Jewett, M.C. (2013) Transforming synthetic
biology with cell-free systems, in Synthetic Biology Tools and Applications
(ed. H. Zhao), Elsevier, New York, pp. 277–302.
6 Carlson, E.D., Gan, R., Hodgman, C.E., and Jewett, M.C. (2012) Cell-free protein
synthesis: applications come of age. Biotechnol. Adv., 30 , 1185–1194. doi:
10.1016/j.biotechadv.2011.09.016
7 Shin, J. and Noireaux, V. (2012) An E. coli cell-free expression toolbox:
application to synthetic gene circuits and artificial cells. ACS Synth. Biol., 1 ,
29–41. doi: 10.1021/sb200016s
8 Ohashi, H., Kanamori, T., Shimizu, Y., and Ueda, T. (2010) A highly controllable
reconstituted cell-free system – a breakthrough in protein synthesis research.
Curr. Pharm. Biotechnol., 11 , 267–271. doi: 10.2174/138920110791111889
9 Hillebrecht, J.R. and Chong, S. (2008) A comparative study of protein synthesis
in in vitro systems: from the prokaryotic reconstituted to the eukaryotic
extract-based. BMC Biotechnol., 8 , 58. doi: 10.1186/1472-6750-8-58
10 Asahara, H. and Chong, S. (2010) In vitro genetic reconstruction of bacterial
transcription initiation by coupled synthesis and detection of RNA polymerase
holoenzyme. Nucleic Acids Res., 38 , e141. doi: 10.1093/nar/gkq377
11 Swartz, J.R. (2012) Transforming biochemical engineering with cell-free biology.
AIChE J., 58 , 5–13. doi: 10.1002/aic.13701
12 Caschera, F. and Noireaux, V. (2014) Synthesis of 2.3 mg/ml of protein with an
all Escherichia coli cell-free transcription-translation system. Biochimie, 99 ,
162–168. doi: 10.1016/j.biochi.2013.11.025
13 Yang, W.C., Patel, K.G., Lee, J., Ghebremariam, Y.T., Wong, H.E., Cooke, J.P., and
Swartz, J.R. (2009) Cell-free production of transducible transcription factors for
nuclear reprogramming. Biotechnol. Bioeng., 104 , 1047–1058. doi: 10.1002/bit.22517

Free download pdf