References 327
55 Albayrak, C. and Swartz, J.R. (2013) Cell-free co-production of an orthogonal
transfer RNA activates efficient site-specific non-natural amino acid
incorporation. Nucleic Acids Res., 41 , 5949–5963. doi: 10.1093/nar/gkt226
56 Yabuki, T., Kigawa, T., Dohmae, N., Takio, K. et al. (1998) Dual amino acid-
selective and site-directed stable-isotope labeling of the human c-Ha-Ras
protein by cell-free synthesis. J. Biomol. NMR, 11 , 295–306.
57 Ozer, E., Chemla, Y., Schlesinger, O., Aviram, H.Y., Riven, I., Haran, G., and
Alfonta, L. (2017) In vitro suppression of two different stop codons. Biotechnol.
Bioeng., 114 , 1065–1073. doi: 10.1002/bit.26226
58 Lee, K.B., Kim, H.C., Kim, D.M., Kang, T.J. et al. (2012) Comparative evaluation
of two cell-free protein synthesis systems derived from Escherichia coli for
genetic code reprogramming. J. Biotechnol., 164 , 330–335. doi: 10.1016/j.
jbiotec.2013.01.011
59 Hirao, I., Ohtsuki, T., Fujiwara, T., Mitsui, T. et al. (2002) An unnatural base pair
for incorporating amino acid analogs into proteins. Nat. Biotechnol., 20 , 177–182.
60 Goto, Y., Katoh, T., and Suga, H. (2011) Flexizymes for genetic code
reprogramming. Nat. Protoc., 6 , 779–790. doi: 10.1038/nprot.2011.331
61 Loscha, K.V., Herlt, A.J., Qi, R., Huber, T. et al. (2012) Multiple-site labeling of
proteins with unnatural amino acids. Angew. Chem. Int. Ed., 51 , 2243–2246. doi:
10.1002/anie.201108275
62 Hong, S.H., Ntai, I., Haimovich, A.D., Kelleher, N.L. et al. (2014) Cell-free
protein synthesis from a release factor 1 deficient Escherichia coli activates
efficient and multiple site-specific nonstandard amino acid incorporation.
ACS Synth. Biol. doi: 10.1021/sb400140t
63 Apweiler, R., Hermjakob, H., and Sharon, N. (1999) On the frequency of protein
glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim.
Biophys. Acta, 1473 , 4–8.
64 Seeberger, P.H. (2008) Automated oligosaccharide synthesis. Chem. Soc. Rev., 37 ,
19–28. doi: 10.1039/b511197h
65 Lingappa, V.R., Lingappa, J.R., Prasad, R., Ebner, K. et al. (1978) Coupled
cell-free synthesis, segregation, and core glycosylation of a secretory protein.
Proc. Natl. Acad. Sci. U.S.A., 75 , 2338–2342.
66 Guarino, C. and DeLisa, M.P. (2012) A prokaryote-based cell-free translation
system that efficiently synthesizes glycoproteins. Glycobiology, 22 , 596–601. doi:
10.1093/glycob/cwr151
67 Sapra, P. and Shor, B. (2013) Monoclonal antibody-based therapies in cancer:
advances and challenges. Pharmacol. Ther., 138 , 452–469. doi: 10.1016/j.
pharmthera.2013.03.004
68 Baneyx, F. and Mujacic, M. (2004) Recombinant protein folding and
misfolding in Escherichia coli. Nat. Biotechnol., 22 , 1399–1408. doi: 10.1038/
nbt1029
69 Martin, R.W., Majewska, N.I., Chen, C.X., Albanetti, T.E., Jimenez, R.B.,
Schmelzer, A.E., Jewett, M.C., and Roy, V. (2017) Development of a CHO-based
cell-free platform for synthesis of active monoclonal antibodies. ACS Synth. Biol.
doi: 10.1021/acssynbio.7b00001
70 Stech, M., Merk, H., Schenk, J.A., Stocklein, W.F., Wustenhagen, D.A., Micheel,
B., Duschl, C., Bier, F.F., and Kubick, S. (2012) Production of functional antibody