The Turing Guide

(nextflipdebug5) #1

522 | NOTES TO PAGES 370–380



  1. See Turing (1952), p. 68.

  2. P. T. Saunders (ed.), Morphogenesis: Collected Works of A. M. Turing, Vol. 3, Elsevier Science (1992).

  3. ‘Countless times’, because citation indices do not normally consult the bibliographies in books, often
    omit non-scientific journals, and never search the ‘public’ media.

  4. See Turing (1952), p. 557.

  5. Saunders (Note 36).

  6. B. Richards, ‘The morphogen theory of phyllotaxis: III—a solution of the morphogenetic equations
    for the case of spherical symmetry’, in Saunders (Note 36).

  7. Turing Digital Archive, AMT/C/27 (http://www.turingarchive.org).

  8. H. O’Connell and M. Fitzgerald, ‘Did Alan Turing have Asperger’s syndrome?’, Irish Journal of
    Psychiatric Medicine, 20(1) (2003), 28–31, p. 29.

  9. Quoted in W. Allaerts, ‘Fifty years after Alan M. Turing: an extraordinary theory of morphogenesis’,
    Belgian Journal of Zoology, 133(1) (2003), 3–14, p. 8.


CHAPTER 34 TURING’S THEORy Of mORPHOGENESIS (wOOllEy, BAkER,
AND mAINI)



  1. Turing (1952).

  2. E. Kreyszig, Advanced Engineering Mathematics Wiley-India (2007).

  3. J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Application, Springer-
    Verlag (2003).

  4. A. Gierer and H. Meinhardt, ‘A theory of biological pattern formation’, Biological Cybernetics, 12
    (1972), 30–9.

  5. V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, ‘Experimental evidence of a sustained standing
    Turing-type nonequilibrium chemical pattern’, Physical Review Letters, 64 (1990), 2953–6.

  6. Q. Ouyang and H. L. Swinney, ‘Transitions from a uniform state to hexagonal and striped Turing
    patterns’, Nature, 352 (1991), 610–12.

  7. I. Lengyel and I. R. Epstein, ‘Modeling of Turing structures in the chlorite–iodide–malonic acid–
    starch reaction system’, Science, 251 (1991), 650–2.

  8. S. Sick, S. Reinker, J. Timmer, and T. Schlake, ‘WNT and DKK determine hair follicle spacing through
    a reaction-diffusion mechanism’, Science, 314 (2006), 1447–50.

  9. A. D. Economou, A. Ohazama, T. Porntaveetus, P. T. Sharpe, S. Kondo, M. A. Basson, A. Gritli-Linde,
    M. T. Cobourne, and J. B. A. Green, ‘Periodic stripe formation by a Turing mechanism operating at
    growth zones in the mammalian palate’, Nature Genetics, 44 (2012), 348–51.

  10. S. W. Cho, S. Kwak, T. E. Woolley, M. J. Lee, E. J. Kim, R. E. Baker, H. J. Kim, J. S. Shin, C. Tickle,
    P. K. Maini, and H. S. Jung, ‘Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback
    loop for spatial patterning of the teeth’, Development, 138 (2011), 1807–16.

  11. R. Sheth, L. Marcon, M. F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, and
    M. A. Ros, ‘Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mecha-
    nism’, Science, 338 (2012), 1476–80.

  12. S. Kondo and R. Asai, ‘A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus’,
    Nature, 3 76 (1995), 765–8.

  13. J. D. Murray, ‘Parameter space for Turing instability in reaction diffusion mechanisms: a comparison
    of models’, Journal of Theoretical Biology, 98 (1982), 143.

  14. J. Bard and I. Lauder, ‘How well does Turing’s theory of morphogenesis work?,’ Journal of Theoretical
    Biology, 45 (1974), 501–31.

  15. E. J. Crampin, E. A. Gaffney, and P. K. Maini, ‘Reaction and diffusion on growing domains: scenarios
    for robust pattern formation’, Bulletin of Mathematical Biology, 61 (1999), 1093–120.

  16. E. A. Gaffney and N. A. M. Monk, ‘Gene expression time delays and Turing pattern formation sys-
    tems’, Bulletin of Mathematical Biology, 68 (2006), 99–130.

  17. T. E. Woolley, R. E. Baker, E. A. Gaffney, P. K. Maini, and S. Seirin-Lee, ‘Effects of intrinsic stochastic-
    ity on delayed reaction-diffusion patterning systems’, Physical Review E, 85 (2012), 051914.

Free download pdf