522 | NOTES TO PAGES 370–380
- See Turing (1952), p. 68.
- P. T. Saunders (ed.), Morphogenesis: Collected Works of A. M. Turing, Vol. 3, Elsevier Science (1992).
- ‘Countless times’, because citation indices do not normally consult the bibliographies in books, often
omit non-scientific journals, and never search the ‘public’ media. - See Turing (1952), p. 557.
- Saunders (Note 36).
- B. Richards, ‘The morphogen theory of phyllotaxis: III—a solution of the morphogenetic equations
for the case of spherical symmetry’, in Saunders (Note 36). - Turing Digital Archive, AMT/C/27 (http://www.turingarchive.org).
- H. O’Connell and M. Fitzgerald, ‘Did Alan Turing have Asperger’s syndrome?’, Irish Journal of
Psychiatric Medicine, 20(1) (2003), 28–31, p. 29. - Quoted in W. Allaerts, ‘Fifty years after Alan M. Turing: an extraordinary theory of morphogenesis’,
Belgian Journal of Zoology, 133(1) (2003), 3–14, p. 8.
CHAPTER 34 TURING’S THEORy Of mORPHOGENESIS (wOOllEy, BAkER,
AND mAINI)
- Turing (1952).
- E. Kreyszig, Advanced Engineering Mathematics Wiley-India (2007).
- J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Application, Springer-
Verlag (2003). - A. Gierer and H. Meinhardt, ‘A theory of biological pattern formation’, Biological Cybernetics, 12
(1972), 30–9. - V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, ‘Experimental evidence of a sustained standing
Turing-type nonequilibrium chemical pattern’, Physical Review Letters, 64 (1990), 2953–6. - Q. Ouyang and H. L. Swinney, ‘Transitions from a uniform state to hexagonal and striped Turing
patterns’, Nature, 352 (1991), 610–12. - I. Lengyel and I. R. Epstein, ‘Modeling of Turing structures in the chlorite–iodide–malonic acid–
starch reaction system’, Science, 251 (1991), 650–2. - S. Sick, S. Reinker, J. Timmer, and T. Schlake, ‘WNT and DKK determine hair follicle spacing through
a reaction-diffusion mechanism’, Science, 314 (2006), 1447–50. - A. D. Economou, A. Ohazama, T. Porntaveetus, P. T. Sharpe, S. Kondo, M. A. Basson, A. Gritli-Linde,
M. T. Cobourne, and J. B. A. Green, ‘Periodic stripe formation by a Turing mechanism operating at
growth zones in the mammalian palate’, Nature Genetics, 44 (2012), 348–51. - S. W. Cho, S. Kwak, T. E. Woolley, M. J. Lee, E. J. Kim, R. E. Baker, H. J. Kim, J. S. Shin, C. Tickle,
P. K. Maini, and H. S. Jung, ‘Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback
loop for spatial patterning of the teeth’, Development, 138 (2011), 1807–16. - R. Sheth, L. Marcon, M. F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, and
M. A. Ros, ‘Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mecha-
nism’, Science, 338 (2012), 1476–80. - S. Kondo and R. Asai, ‘A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus’,
Nature, 3 76 (1995), 765–8. - J. D. Murray, ‘Parameter space for Turing instability in reaction diffusion mechanisms: a comparison
of models’, Journal of Theoretical Biology, 98 (1982), 143. - J. Bard and I. Lauder, ‘How well does Turing’s theory of morphogenesis work?,’ Journal of Theoretical
Biology, 45 (1974), 501–31. - E. J. Crampin, E. A. Gaffney, and P. K. Maini, ‘Reaction and diffusion on growing domains: scenarios
for robust pattern formation’, Bulletin of Mathematical Biology, 61 (1999), 1093–120. - E. A. Gaffney and N. A. M. Monk, ‘Gene expression time delays and Turing pattern formation sys-
tems’, Bulletin of Mathematical Biology, 68 (2006), 99–130. - T. E. Woolley, R. E. Baker, E. A. Gaffney, P. K. Maini, and S. Seirin-Lee, ‘Effects of intrinsic stochastic-
ity on delayed reaction-diffusion patterning systems’, Physical Review E, 85 (2012), 051914.