The Turing Guide

(nextflipdebug5) #1

NOTES TO PAGES 441–448 | 527


die neue  Grundlagenkrise der Mathematik’, Mathematische Zeitschrift, 10 (1921), 39–79 (also in
Gesammelte Abhandlungen, Vol. 2, Springer (1968), 143–80).


  1. See the Penrose Papers, University College London Archives, especially boxes 20–1 and 26–8.

  2. See H. Harris, ‘Lionel Sharples Penrose. 1898–1972’, Biographical Memoirs of Fellows of the Royal
    Society, 19 (1973), 521–61 (also in Journal of Medical Genetics, 11 (1974), 1–24).

  3. B. A. W. Russell, The Analysis of Matter, Kegan Paul (1927).

  4. M. H. A. Newman, ‘Mr. Russell’s “Causal theory of perception” ’, Mind (new ser.), 37 (1928), 137–48.

  5. See also W. Demopoulos and M. Friedman, ‘The concept of structure in The Analysis of Matter’, in
    A. D. Irvine (ed.), Bertrand Russell: Language, Knowledge and the World, Routledge (1999), 277–94.

  6. I. Grattan-Guinness, ‘Logic, topology and physics: points of contact between Bertrand Russell and
    Max Newman’, Russell (new ser.), 32 (2012), 5–29.

  7. M. H. A. Newman, ‘Alan Mathison Turing, 1912–1954’, Biographical Memoirs of Fellows of the Royal
    Society, 1 (November 1955), 253–263.

  8. Information comes from the Royal Society Archives, and the Newman Archive (Note 15), items
    2–15–10 to –13.

  9. There seems to be no Newman material in the Frank Plumpton Ramsey papers at the University of
    Pittsburgh.

  10. On this ironic situation see Grattan-Guinness (Note 4), pp.  327–8, 388–91, and 592–3. ‘I remem-
    ber talking to you about Gödel’s proof soon after it appeared’, Newman recalled to Russell on 25
    September 1966, Newman Archive (Note 15), item 2–15–11.

  11. On Turing’s circle of Cambridge connections during and after graduation, see Hodges (1983),
    Chapter 4.


CHAPTER 41 IS THE wHOlE UNIVERSE A COmPUTER? (COPElAND, SPREVAk,
AND SHAGRIR)



  1. Turing (1950), p. 446.

  2. B. J. Copeland and R. Sorensen, ‘Multiple realizability: the Copeland–Sorensen optical universal com-
    puting machine’, in B. J. Copeland, G. Piccinini, D. Proudfoot, and O. Shagrir (eds), The Philosophy of
    Computing (forthcoming).

  3. Turing (1936), p. 59.

  4. L. Wittgenstein, Remarks on the Philosophy of Psychology, Vol. 1, Blackwell (1980), section 1096.

  5. Turing (1948), p. 416.

  6. Turing (1947), pp. 387, 391.

  7. Turing (1950), p. 444.

  8. A. M. Turing, Programmers’ Handbook for Manchester Electronic Computer Mark II, p.  1; a digi-
    tal facsimile is in The Turing Archive for the History of Computing (http://www.AlanTuring.net/
    programmers_handbook).

  9. We canvas alternative answers in our forthcoming chapter ‘Zuse’s thesis, Gandy’s thesis, and Penrose’s
    thesis’, in M. Cuffaro and S. Fletcher (eds), Physical Perspectives on Computation, Computational
    Perspectives on Physics, Cambridge University Press.

  10. A. M. Turing, ‘Proposed electronic calculator’ , in Copeland et al. (2005), p. 386.

  11. J. Searle, ‘Is the brain a digital computer?’, Proceedings and Addresses of the American Philosophical
    Association, 64 (1990), 21–37 (pp. 25–27); J. Searle, The Rediscovery of the Mind, MIT Press (1992),
    pp. 205–9; H. Putnam, Representation and Reality, MIT Press (1988), pp. 121–5.

  12. B. J. Copeland, ‘What is computation?’, Synthese, 108 (1996), 335–59; D. J. Chalmers, ‘Does a rock
    implement every finite-state automaton?’, Synthese, 108 (1996), 309–33.

  13. J. von Neumann, ‘The general and logical theory of automata’, in A. H. Taub (ed.), Collected Works, Vol. 5,
    Pergamon Press (1963).

  14. B. J. Copeland and G. Sommaruga, ‘The stored-program universal computer: did Zuse anticipate
    Turing and von Neumann?’ in G. Sommaruga and T. Strahm (eds), Turing’s Revolution, Birkhauser/
    Springer (2015), pp. 99–100.

Free download pdf