16 Noncommutative Mathematics for Quantum Systems
Note thatψdoes not depend on the direction that we choose for
our coordinate system, if we take
u(θ,φ) = cosθ
2| 0 〉+eiφsinθ
2| 1 〉,u⊥(θ,φ) = sinθ
2| 0 〉−eiφcosθ
2| 1 〉,instead of the vectors| 1 〉and 0〉, withθ∈[0,π],φ∈[0, 2π), then
we have
ψ(θ,φ) =1
√
2(
|u(θ,φ)〉⊗|u⊥(θ,φ)〉−|u⊥(θ,φ)〉⊗|u(θ,φ)〉)=1
√
2(
cosθ
2sinθ
2| 00 〉−eiφcos^2θ
2| 01 〉+eiφsin^2θ
2| 10 〉−e^2 iφcosθ
2sinθ
2| 11 〉−cosθ
2sinθ
2| 00 〉+eiφcos^2θ
2| 10 〉−eiφsin^2θ
2| 01 〉+e^2 iφcosθ
2sinθ
2| 11 〉)=−eiφ
√
2(
| 01 〉−| 10 〉)
=−eiφψ, (1.3.1)that is, the vectorψ(θ,φ)implements the same state asψ,
We suppose that each of two physicists, called Alice and Bob,
receives one of the two particles. Let
SA(θ,φ) =S(θ,φ)⊗id and SB(θ,φ) =id⊗S(θ,φ)where S(θ,φ) denotes the observable corresponding to a spin
measurement on an electron defined in Example 1.2.7. Then
SA(θ,φ)corresponds to a spin measurement on Alice’ particle, and
SB(θ,φ)corresponds to a spin measurement on Bob’s particle. The
spectral decompositions of these observables are given by
SA(θ,φ) = |u〉〈u|⊗id−|u⊥〉〈u⊥|⊗id,SB(θ,φ) = id⊗|u〉〈u|−id⊗|u⊥〉〈u⊥|,and it is straight forward to check that we have
P(
SA(θ,φ) =± 1)
=1
2=P(
SB(θ,φ) =± 1)